Do you want to publish a course? Click here

Is it possible to observationally distinguish adiabatic Quartessence from LambdaCDM?

167   0   0.0 ( 0 )
 Added by Ioav Waga
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The equation of state (EOS) in quartessence models interpolates between two stages: $psimeq 0$ at high energy densities and $papprox -rho$ at small ones. In the quartessence models analyzed up to now, the EOS is convex, implying increasing adiabatic sound speed ($c_{s}^{2}$) as the energy density decreases in an expanding Universe. A non-negligible $c_{s}^{2}$ at recent times is the source of the matter power spectrum problem that plagued all convex (non-silent) quartessence models. Viability for these cosmologies is only possible in the limit of almost perfect mimicry to $Lambda$CDM. In this work we investigate if similarity to $Lambda$CDM is also required in the class of quartessence models whose EOS changes concavity as the Universe evolves. We focus our analysis in the simple case in which the EOS has a step-like shape, such that at very early times $psimeq0$, and at late times $psimeq const<0$. For this class of models a non-negligible $c_{s}^{2}$ is a transient phenomenon, and could be relevant only at a more early epoch. We show that agreement with a large set of cosmological data requires that the transition between these two asymptotic states would have occurred at high redshift ($z_tgtrsim38$). This leads us to conjecture that the cosmic expansion history of any successful non-silent quartessence is (practically) identical to the $Lambda$CDM one.

rate research

Read More

The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on February 28, 2013), recorded at two different sites in the south-eastern part of the Kamchatka peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential immediate (up to 2 weeks) deterministic precursors due to the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of Kirshvink (2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard input-sensor-response approach to determine what input signals trigger specific seismic escape brain activity responses
It is known that time-dependent perturbations can enhance superconductivity and increase the critical temperature. If this phenomenon happens to high-T_c superconductors, one could obtain room-temperature superconductors, but this is still an open issue experimentally. Meanwhile, we would like to understand this phenomenon from gravity dual and see if the enhancement is possible for holographic superconductors. Previous work (arXiv:1104.4098 [hep-th]) has studied this issue by adding a time-dependent chemical potential, but their analysis is questionable as a true dynamic equilibrium. In particular, the AdS boundary does not supply energy to the bulk spacetime in their setup. A more appropriate way to discuss the enhancement is to add a time-dependent vector potential, i.e., a time-dependent electric field. However, the enhancement does not occur for holographic superconductors.
123 - Vadim A. Bednyakov 2015
The paper contains description of the main properties of the galactic dark matter (DM) particles, available approaches for detection of DM, main features of direct DM detection, ways to estimate prospects for the DM detection, the first collider search for a DM candidate within an Effective Field Theory, complete review of ATLAS results of the DM candidate search with LHC RUN I, and less complete review of exotic dark particle searches with other accelerators and not only. From these considerations it follows that one is unable to prove, especially model-independently,a discovery of a DM particle with an accelerator, or collider. One can only obtain evidence on existence of a weakly interacting neutral particle, which could be, or could not be the DM candidate. The current LHC DM search program uses only the missing transverse energy signature. Non-observation of any excess above Standard Model expectations forces the LHC experiments to enter into the same fighting for the best exclusion curve, in which (almost) all direct and indirect DM search experiments permanently take place. But this fighting has very little (almost nothing) to do with a real possibility of discovering a DM particle. The true DM particles possess an exclusive galactic signature --- annual modulation of a signal, which is accessible today only for direct DM detection experiments. There is no way for it with a collider, or accelerator. Therefore to prove the DM nature of a collider-discovered candidate one must find the candidate in a direct DM experiment and demonstrate the galactic signature for the candidate. Furthermore, being observed, the DM particle must be implemented into a modern theoretical framework. The best candidate is the supersymmetry, which looks today inevitable for coherent interpretation of all available DM data.
172 - S.V. Jeffers 2013
Theoretical predictions suggest that the distribution of planets in very young stars could be very different to that typically observed in Gyr old systems that are the current focus of radial velocity surveys. However, the detection of planets around young stars is hampered by the increased stellar activity associated with young stars, the signatures of which can bias the detection of planets. In this paper we place realistic limitations on the possibilities for detecting planets around young active G and K dwarfs. The models of stellar activity based on tomographic imaging of the G dwarf HD 141943 and the K1 dwarf AB Dor and also include contributions from plage and many small random starspots. Our results show that the increased stellar activity levels present on young Solar-type stars strongly impacts the detection of Earth-mass and Jupiter mass planets and that the degree of activity jitter is directly correlated with stellar vsinis. We also show that for G and K dwarfs, the distribution of activity in individual stars is more important than the differences in induced radial velocities as a function of spectral type. We conclude that Jupiter mass planets can be detected close-in around fast-rotating young active stars, Neptune-mass planets around moderate rotators and that Super-Earths are only detectable around very slowly rotating stars. The effects of an increase in stellar activity jitter by observing younger stars can be compensated for by extending the observational base-line to at least 100 epochs.
225 - Li-Gang Wang 2008
We present a model for a vacuum-like effective medium composed of the absorbing and gain media under the special designed parameters. Within the linear response theory, we prove that any pulse signal (with or without a discontinuity) through such a kind of vacuum-like effective media is always equal to the light speed in vacuum () without any distortion. As well known that the group velocity in anomalous or normal dispersive media may be smaller or larger than, or even become negative, but the discontinuous point always propagates at the velocity . Therefore we present some discussions on different definitions of the signals, based on the light pulses with a well-defined shape or with a sudden change, for trying to understand two possibilities for the signal velocity without violating the causality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا