No Arabic abstract
We report on the BVRI multi-band follow-up photometry of the transiting extrasolar planet HD 189733b. We revise the transit parameters and find planetary radius RP = 1.154+/- 0.032RJ and inclination i_P = 85.79+/-0.24deg. The new density (~ 1g cm-3) is significantly higher than the former estimate (~ 0.75g cm-3); this shows that from the current sample of 9 transiting planets, only HD 209458 (and possibly OGLE-10b) have anomalously large radii and low densities. We note that due to the proximity of the parent star, HD 189733b currently has one of the most precise radius determinations among extrasolar planets. We calculate new ephemerides: P = 2.218573+/-0.000020 days, T0 = 2453629.39420+/-0.00024 (HJD), and estimate the timing offsets of the 11 distinct transits with respect to the predictions of a constant orbital period, which can be used to reveal the presence of additional planets in the system.
HD 189733 is a K2 dwarf, orbited by a giant planet at 8.8 stellar radii. In order to study magnetospheric interactions between the star and the planet, we explore the large-scale magnetic field and activity of the host star. We collected spectra using the ESPaDOnS and the NARVAL spectropolarimeters, installed at the 3.6-m Canada-France-Hawaii telescope and the 2-m Telescope Bernard Lyot at Pic du Midi, during two monitoring campaigns (June 2007 and July 2008). HD 189733 has a mainly toroidal surface magnetic field, having a strength that reaches up to 40 G. The star is differentially rotating, with latitudinal angular velocity shear of domega = 0.146 +- 0.049 rad/d, corresponding to equatorial and polar periods of 11.94 +- 0.16 d and 16.53 +- 2.43 d respectively. The study of the stellar activity shows that it is modulated mainly by the stellar rotation (rather than by the orbital period or the beat period between the stellar rotation and the orbital periods). We report no clear evidence of magnetospheric interactions between the star and the planet. We also extrapolated the field in the stellar corona and calculated the planetary radio emission expected for HD 189733b given the reconstructed field topology. The radio flux we predict in the framework of this model is time variable and potentially detectable with LOFAR.
We report on the follow-up XMM-Newton observation of the planet-hosting star HD 189733 we obtained in April 2011. We observe a flare just after the secondary transit of the hot Jupiter. This event shares the same phase and many of the characteristics of the flare we observed in 2009. We suggest that a systematic interaction between planet and stellar magnetic fields when the planet passes close to active regions on the star can lead to periodic variability phased with planetary motion. By mean of high resolution X-ray spectroscopy with RGS we determine that the corona of this star is unusually dense.
We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope, and 101 velocities obtained with the Levy Spectrograph at the Automated Planet Finder Telescope (APF) at Lick Observatory. Our observations reveal six new planetary candidates, with orbital periods of P=3.1, 6.8, 22.8, 46.7, 94.2 and 2247 days, spanning masses of msini=3.8, 3.5, 8.9, 21.3, 10.8 and 108 M_earth respectively. Our analysis indicates that the outermost signal is unlikely to be an artifact induced by stellar activity. In addition, several years of precision photometry with the T10 0.8~m automatic photometric telescope (APT) at Fairborn Observatory demonstrated a lack of brightness variability to a limit of ~0.0002 mag, providing strong support for planetary-reflex motion as the source of the radial velocity variations. The HD 219134 system, with its bright (V=5.6) primary provides an excellent opportunity to obtain detailed orbital characterization (and potentially follow-up observations) of a planetary system that resembles many of the multiple-planet systems detected by Kepler, and which are expected to be detected by NASAs forthcoming TESS Mission and by ESAs forthcoming PLATO Mission.
In this paper, we report a refined determination of the orbital parameters and the detection of the Rossiter-McLaughlin effect of the recently discovered transiting exoplanet HD147506b (HAT-P-2b). The large orbital eccentricity at the short orbital period of this exoplanet is unexpected and is distinguishing from other known transiting exoplanets. We performed high-precision radial velocity spectroscopic observations of HD147506 (HAT-P-2) with the new spectrograph SOPHIE, mounted on the 1.93 m telescope at the Haute-Provence observatory (OHP). We obtained 63 new measurements, including 35 on May 14 and 20 on June 11, when the planet was transiting its parent star. The radial velocity (RV) anomaly observed illustrates that HAT-P-2b orbital motion is set in the same direction as its parent star spin. The sky-projected angle between the normal of the orbital plane and the stellar spin axis, lambda = 0.2 +12.2 -12.5 deg, is consistent with zero. The planetary and stellar radii were re-determined, yielding R_p = 0.951 +0.039 -0.053 R_Jup, R_s = 1.416 +0.040 -0.062 R_Sun. The mass M_p = 8.62 +0.39 -0.55 M_Jup and radius of HAT-P-2b indicate a density of 12.5 +2.6 -3.6 g cm^{-3}, suggesting an object in between the known close-in planets with typical density of the order of 1 g cm^{-3}, and the very low-mass stars, with density greater than 50 g cm^{-3}.
We derive improved system parameters for the HD 209458 system using a model that simultaneously fits both photometric transit and radial velocity observations. The photometry consists of previous Hubble Space Telescope STIS and FGS observations, twelve I-band transits observed between 2001-2003 with the Mt. Laguna Observatory 1m telescope, and six Stromgren b+y transits observed between 2001-2004 with two of the Automatic Photometric Telescopes at Fairborn Observatory. The radial velocities were derived from Keck/HIRES observations. The model properly treats the orbital dynamics of the system, and thus yields robust and physically self-consistent solutions. Our set of system parameters agrees with previously published results though with improved accuracy. For example, applying robust limits on the stellar mass of 0.93-1.20Msun, we find 1.26 < Rplanet < 1.42 Rjup and 0.59 < Mplanet < 0.70 Mjup. We can reduce the uncertainty on these estimates by including a stellar mass-radius relation constraint, yielding Rplanet = 1.35 +/- 0.07 Rjup and Mplanet = 0.66 +/- 0.04 Mjup. Our results verify that the planetary radius is 10-20% larger than predicted by planet evolution models, confirming the need for an additional mechanism to slow the evolutionary contraction of the planet. A revised ephemeris is derived, T0=2452854.82545 + 3.52474554E (HJD), which now contains an uncertainty in the period of 0.016s and should facilitate future searches for planetary satellites and other bodies in the HD 209458 system.