Do you want to publish a course? Click here

System Parameters of the Transiting Extrasolar Planet HD 209458b

89   0   0.0 ( 0 )
 Added by Robert Wittenmyer
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive improved system parameters for the HD 209458 system using a model that simultaneously fits both photometric transit and radial velocity observations. The photometry consists of previous Hubble Space Telescope STIS and FGS observations, twelve I-band transits observed between 2001-2003 with the Mt. Laguna Observatory 1m telescope, and six Stromgren b+y transits observed between 2001-2004 with two of the Automatic Photometric Telescopes at Fairborn Observatory. The radial velocities were derived from Keck/HIRES observations. The model properly treats the orbital dynamics of the system, and thus yields robust and physically self-consistent solutions. Our set of system parameters agrees with previously published results though with improved accuracy. For example, applying robust limits on the stellar mass of 0.93-1.20Msun, we find 1.26 < Rplanet < 1.42 Rjup and 0.59 < Mplanet < 0.70 Mjup. We can reduce the uncertainty on these estimates by including a stellar mass-radius relation constraint, yielding Rplanet = 1.35 +/- 0.07 Rjup and Mplanet = 0.66 +/- 0.04 Mjup. Our results verify that the planetary radius is 10-20% larger than predicted by planet evolution models, confirming the need for an additional mechanism to slow the evolutionary contraction of the planet. A revised ephemeris is derived, T0=2452854.82545 + 3.52474554E (HJD), which now contains an uncertainty in the period of 0.016s and should facilitate future searches for planetary satellites and other bodies in the HD 209458 system.



rate research

Read More

There is evidence that the transiting planet HD 209458b has a large exosphere of neutral hydrogen, based on a 15% decrement in Lyman-alpha flux that was observed by Vidal-Madjar et al. during transits. Here we report upper limits on H-alpha absorption by the exosphere. The results are based on optical spectra of the parent star obtained with the Subaru High Dispersion Spectrograph. Comparison of the spectra taken inside and outside of transit reveals no exospheric H-alpha signal greater than 0.1% within a 5.1A band (chosen to have the same Delta_lambda/lambda as the 15% Ly-alpha absorption). The corresponding limit on the column density of n=2 neutral hydrogen is N_2 <~ 10^9 cm^{-2}. This limit constrains proposed models involving a hot (~10^4 K) and hydrodynamically escaping exosphere.
We show that the very close-by (19 pc) K0 star HD 189733, already found to be orbited by a transiting giant planet, is the primary of a double-star system, with the secondary being a mid-M dwarf with projected separation of about 216 AU from the primary. This conclusion is based on astrometry, proper motion and radial velocity measurements, spectral type determination and photometry. We also detect differential proper motion of the secondary. The data appear consistent with the secondary orbiting the primary in a clockwise orbit, lying nearly in the plane of the sky (that is, nearly perpendicular to the orbital plane of the transiting planet), and with period about 3200 years.
We present a new technique for detecting scattered starlight from transiting, close-orbiting extrasolar giant planets (CEGPs) that has the virtues of simplicity, robustness, linearity, and model-independence. Given a series of stellar spectra obtained over various phases of the planetary orbit, the goal is to measure the strength of the component scattered by the planet relative to the component coming directly from the star. We use two complementary strategies, both of which rely on the predictable Doppler shifts of both components and on combining the results from many spectral lines and many exposures. In the first strategy, we identify segments of the stellar spectrum that are free of direct absorption lines and add them after Doppler-shifting into the planetary frame. In the second strategy, we compare the distribution of equivalent-width ratios of the scattered and direct components. Both strategies are calibrated with a ``null test in which scrambled Doppler shifts are applied to the spectral segments. As an illustrative test case, we apply our technique to spectra of HD 209458 taken when the planet was near opposition (with orbital phases ranging from 11 to 34$arcdeg$, where 0$arcdeg$ is at opposition), finding that the planet-to-star flux ratio is $(1.4 pm 2.9)times10^{-4}$ in the wavelength range 554$-$681 nm. This corresponds to a geometric albedo of $0.8 pm 1.6$, assuming the phase function of a Lambert sphere. Although the result is not statistically significant, the achieved sensitivity and relatively small volume of data upon which it is based are very encouraging for future ground-based spectroscopic studies of scattered light from transiting CEGP systems.
We report the spectroscopic detection of mid-infrared emission from the transiting exoplanet HD 209458b. Using archive data taken with the Spitzer/IRS instrument, we have determined the spectrum of HD 209458b between 7.46 and 15.25 microns. We have used two independent methods to determine the planet spectrum, one differential in wavelength and one absolute, and find the results are in good agreement. Over much of this spectral range, the planet spectrum is consistent with featureless thermal emission. Between 7.5 and 8.5 microns, we find evidence for an unidentified spectral feature. If this spectral modulation is due to absorption, it implies that the dayside vertical temperature profile of the planetary atmosphere is not entirely isothermal. Using the IRS data, we have determined the broad-band eclipse depth to be 0.00315 +/- 0.000315, implying significant redistribution of heat from the dayside to the nightside. This work required development of improved methods for Spitzer/IRS data calibration that increase the achievable absolute calibration precision and dynamic range for observations of bright point sources.
We report on observations of 11 transit events of the transiting extrasolar planet XO-1b by the SuperWASP-North observatory. From our data, obtained during May-September 2004, we find that the XO-1b orbital period is 3.941634 +/- 0.000137 days, the planetary radius is 1.34 +/- 0.12 Rjup and the inclination is 88.92 +/- 1.04 degrees, in good agreement with previously published values. We tabulate the transit timings from 2004 SuperWASP and XO data, which are the earliest obtained for XO-1b, and which will therefore be useful for future investigations of timing variations caused by additional perturbing planets. We also present an ephemeris for the transits. See http://www.superwasp.org for general project details.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا