Do you want to publish a course? Click here

The Cosmic Infrared Background Resolved by Spitzer. Contributions of Mid-Infrared Galaxies to the Far-Infrared Background

73   0   0.0 ( 0 )
 Added by Herve Dole
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. We quantify the contributions of 24um galaxies to the Far-Infrared (FIR) Background at 70 and 160um. We provide new estimates of the Cosmic Infrared Background (CIB), and compare it with the Cosmic Optical Background (COB). Methods. Using Spitzer data at 24, 70 and 160um in three deep fields, we stacked more than 19000 MIPS 24um sources with S24>60uJy at 70 and 160um, and measured the resulting FIR flux densities. Results. This method allows a gain up to one order of magnitude in depth in the FIR. We find that the Mid-Infrared (MIR) 24um selected sources contribute to more than 70% of the CIB at 70 and 160um. This is the first direct measurement of the contribution of MIR-selected galaxies to the FIR CIB. Galaxies contributing the most to the total CIB are thus z~1 luminous infrared galaxies, which have intermediate stellar masses. We estimate that the CIB will be resolved at 0.9 mJy at 70 and 3 mJy at 160um. By combining the extrapolation of the 24um source counts below 60uJy, with 160/24 and 70/24 colors as measured with the stacking analysis, we obtain lower limits of 7.1+/-1.0 and 13.4+/-1.7 nW/m2/sr for the CIB at 70 and 160um, respectively. Conclusions. The MIPS surveys have resolved more than three quarters of the MIR and FIR CIB. By carefully integrating the Extragalactic Background Light (EBL) SED, we also find that the CIB has the same brightness as the COB, around 24 nW/m2/sr. The EBL is produced on average by 115 infrared photons for one visible photon. Finally, the galaxy formation and evolution processes emitted a brightness equivalent to 5% of the primordial electromagnetic background (CMB).



rate research

Read More

The Cosmic Infrared Background (CIB) peaks in the Far-Infrared (FIR), and its Spectral Energy Distribution (SED) is now well constrained. Thanks to recent facilities and Spitzer, the populations contributing to the CIB are being characterized: the dominant galaxy contributions to the FIR CIB are Luminous IR galaxies (LIRGs) at 0.5<z<1.5 and, to the submm CIB, Ultra-LIRGs at z>2. These populations of galaxies experience very high rates of evolution with redshift. Because of confusion, the CIB is (and will remain in some domains) partially resolved and its contributing galaxies SEDs are not well constrained. We discuss all these aspects and show how confusion limits Spitzer observations, and how to overcome it in order to study the unresolved part of the CIB.
The discovery of the Cosmic Infrared Background (CIB) in 1996, together with recent cosmological surveys from the mid-infrared to the millimeter have revolutionized our view of star formation at high redshifts. It has become clear, in the last decade, that a population of galaxies that radiate most of their power in the far-infrared (the so-called ``infrared galaxies) contributes an important part of the whole galaxy build-up in the Universe. Since 1996, detailed (and often painful) investigations of the high-redshift infrared galaxies have resulted in the spectacular progress covered in this review. We outline the nature of the sources of the CIB including their star-formation rate, stellar and total mass, morphology, metallicity and clustering properties. We discuss their contribution to the stellar content of the Universe and their origin in the framework of the hierarchical growth of structures. We finally discuss open questions for a scenario of their evolution up to the present-day galaxies.
We study the infrared (IR) properties of high-redshift galaxies using deep Spitzer 24, 70, and 160 micron data. Our primary interest is to improve the constraints on the total IR luminosities, L(IR), of these galaxies. We combine the Spitzer data in the southern Extended Chandra Deep Field with a K-band-selected galaxy sample and photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 micron flux densities of 1.5 < z < 2.5 galaxies as a function of 24 micron flux density, X-ray activity, and rest-frame near-IR color. Galaxies with 1.5 < z < 2.5 and S(24)=53-250 micro-Jy have L(IR) derived from their average 24-160 micron flux densities within factors of 2-3 of those derived from the 24 micron flux densities only. However, L(IR) derived from the average 24-160 micron flux densities for galaxies with S(24) > 250 micro-Jy and 1.5 < z < 2.5 are lower than those derived using only the 24 micron flux density by factors of 2-10. Galaxies with S(24) > 250 micro-Jy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN may contribute to the high 24 micron emission. Based on the average 24-160 micron flux densities, nearly all 24 micron-selected galaxies at 1.5 < z < 2.5 have L(IR) < 6 x 10^12 solar luminosities, which if attributed to star formation corresponds to < 1000 solar masses per year. This suggests that high redshift galaxies may have similar star formation efficiencies and feedback processes as local analogs. Objects with L(IR) > 6 x 10^12 solar luminosities are quite rare, with a surface density ~ 30 +/- 10 per sq. deg, corresponding to ~ 2 +/- 1 x 10^-6 Mpc^-3 over 1.5 < z < 2.5.
111 - G. Lagache 2007
We report the detection of correlated anisotropies in the Cosmic Far-Infrared Background at 160 microns. We measure the power spectrum in the Spitzer/SWIRE Lockman Hole field. It reveals unambiguously a strong excess above cirrus and Poisson contributions, at spatial scales between 5 and 30 arcminutes, interpreted as the signature of infrared galaxy clustering. Using our model of infrared galaxy evolution we derive a linear bias b=1.74 pm 0.16. It is a factor 2 higher than the bias measured for the local IRAS galaxies. Our model indicates that galaxies dominating the 160 microns correlated anisotropies are at z~1. This implies that infrared galaxies at high redshifts are biased tracers of mass, unlike in the local Universe.
76 - James Bock 2005
We are developing a rocket-borne instrument (the Cosmic Infrared Background ExpeRiment, or CIBER) to search for signatures of primordial galaxy formation in the cosmic near-infrared extra-galactic background. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The cameras will search for spatial fluctuations in the background on angular scales from 7 arcseconds to 2 degrees over a range of angular scales poorly covered by previous experiments. CIBER will determine if the fluctuations reported by the IRTS arise from first-light galaxies or have a local origin. In a short rocket flight CIBER has sensitivity to probe fluctuations 100 times fainter than IRTS/DIRBE. By jointly observing regions of the sky studied by Spitzer and ASTRO-F, CIBER will build a multi-color view of the near-infrared background, accurately assessing the contribution of local (z = 1-3) galaxies to the observed background fluctuations, allowing a deep and comprehensive survey for first-light galaxy background fluctuations. The low-resolution spectrometer will search for a redshifted Lyman cutoff feature between 0.8 - 2.0 microns. The high-resolution spectrometer will trace zodiacal light using the intensity of scattered Fraunhofer lines, providing an independent measurement of the zodiacal emission and a new check of DIRBE zodiacal dust models. The combination will systematically search for the infrared excess background light reported in near-infrared DIRBE/IRTS data, compared with the small excess reported at optical wavelengths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا