Do you want to publish a course? Click here

X-ray Properties of Young Stars and Stellar Clusters

55   0   0.0 ( 0 )
 Added by Eric D. Feigelson
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although the environments of star and planet formation are thermodynamically cold, substantial X-ray emission from 10-100 MK plasmas is present. In low mass pre-main sequence stars, X-rays are produced by violent magnetic reconnection flares. In high mass O stars, they are produced by wind shocks on both stellar and parsec scales. The recent Chandra Orion Ultradeep Project, XMM-Newton Extended Survey of Taurus, and Chandra studies of more distant high-mass star forming regions reveal a wealth of X-ray phenomenology and astrophysics. X-ray flares mostly resemble solar-like magnetic activity from multipolar surface fields, although extreme flares may arise in field lines extending to the protoplanetary disk. Accretion plays a secondary role. Fluorescent iron line emission and absorption in inclined disks demonstrate that X-rays can efficiently illuminate disk material. The consequent ionization of disk gas and irradiation of disk solids addresses a variety of important astrophysical issues of disk dynamics, planet formation, and meteoritics. New observations of massive star forming environments such as M 17, the Carina Nebula and 30 Doradus show remarkably complex X-ray morphologies including the low-mass stellar population, diffuse X-ray flows from blister HII regions, and inhomogeneous superbubbles. X-ray astronomy is thus providing qualitatively new insights into star and planet formation.



rate research

Read More

We present Chandra X-ray data of the NGC 1333 embedded cluster, combining these data with existing Chandra data, Sptizer photometry and ground based spectroscopy of both the NGC 1333 & Serpens North clusters to perform a detailed study of the X-ray properties of two of the nearest embedded clusters to the Sun. In NGC 1333, a total of 95 cluster members are detected in X-rays, of which 54 were previously identified with Spitzer. Of the Spitzer sources, we detect 23% of the Class I protostars, 53% of the Flat Spectrum sources, 52% of the Class II, and 50% of the Transition Disk YSOs. Forty-one Class III members of the cluster are identified, bringing the total identified YSO population to 178. The X-ray Luminosity Functions (XLFs) of the NGC 1333 and Serpens clusters are compared to each other and the Orion Nebula Cluster. Based on this comparison, we obtain a new distance for the Serpens cluster of 360+22/-13 pc. The X-ray luminosity was found to depend on the bolometric luminosity as in previous studies of other clusters, and that Lx depends primarily on the stellar surface area. In the NGC 1333 cluster, the Class III sources have a somewhat higher X-ray luminosity for a given surface area. We also find evidence in NGC 1333 for a jump in the X-ray luminosity between spectral types of M0 and K7, we speculate that this may result from the presence of radiative zones in the K-stars. The gas column density vs. extinction in the NGC 1333 was found to be N_H = 0.89 +/- 0.13 x 10^22 A_K, this is lower than expected of the standard ISM but similar to that found previously in the Serpens Cloud Core.
Using XMM data, we study for the first time the X-ray emission of HM1 and IC2944/2948. Low-mass, pre-main-sequence objects with an age of a few Myr are detected, as well as a few background or foreground objects. Most massive stars in both clusters display the usual high-energy properties of that type of objects, though with log(Lx/Lbol) apparently lower in HM1 than in IC2944/2948. Compared with studies of other clusters, it seems that a low signal-to-noise ratio at soft energies, due to the high extinction, may be the main cause of this difference. In HM1, the two Wolf-Rayet stars show contrasting behaviors: WR89 is extremely bright, but much softer than WR87. It remains to be seen whether wind-wind collisions or magnetically confined winds can explain these emissions. In IC2944/2948, the X-ray sources concentrate around HD101205; a group of massive stars to the north of this object is isolated, suggesting that there exist two subclusters in the field-of-view.
High resolution X-ray spectra of very young massive stars opened a new chapter in the diagnostics and understanding of the properties of stellar wind plasmas. Observations of several very young early type stars in the Orion Trapezium demonstrated that the conventional model of shock heated plasmas in stellar winds is not sufficient to explain the observed X-ray spectra. Detailed X-ray line diagnostics revealed extreme temperatures in some of the candidates as well as evidence for high plasma densities. It is also evident from high resolution spectra of more conventional early type stars, that not all show such extreme characteristics. However, the fact that some of the stars show hot and dense components and some do not requires more understanding of the physical processes involved in stellar wind emissions. The Orion Trapezium stars distinguish themselves from all the others by their extreme youth. By comparing the diverse spectral properties of theta Ori A and theta Ori E with those of theta Ori C, we further demonstrate that X-ray spectral properties of very young massive stars are far from understood.
Like other young stellar objects (YSOs), FU Ori-type stars have been detected as strong X-ray emitters. However, little is known about how the outbursts of these stars affect their X-ray properties. We assemble available X-ray data from XMM Newton and Chandra observations of 16 FU Ori stars, including a new XMM Newton observation of Gaia 17bpi during its optical rise phase. Of these stars, six were detected at least once, while 10 were non-detections, for which we calculate upper limits on intrinsic X-ray luminosity ($L_X$) as a function of plasma temperature ($kT$) and column density ($N_H$). The detected FU Ori stars tend to be more X-ray luminous than typical for non-outbursting YSOs, based on comparison to a sample of low-mass stars in the Orion Nebula Cluster. FU Ori stars with high $L_X$ have been observed both at the onset of their outbursts and decades later. We use the Kaplan-Meier estimator to investigate whether the higher X-ray luminosities for FU Ori stars is characteristic or a result of selection effects, and we find the difference to be statistically significant ($p<0.01$) even when non-detections are taken into account. The additional X-ray luminosity of FU Ori stars relative to non-outbursting YSOs cannot be explained by accretion shocks, given the high observed plasma temperatures. This suggests that, for many FU Ori stars, either 1) the outburst leads to a restructuring of the magnetosphere in a way that enhances X-ray emission, or 2) FU Ori outbursts are more likely to occur among YSOs with the highest quiescent X-ray luminosity.
453 - Marc Freitag 2008
In young star clusters, the density can be high enough and the velocity dispersion low enough for stars to collide and merge with a significant probability. This has been suggested as a possible way to build up the high-mass portion of the stellar mass function and as a mechanism leading to the formation of one or two very massive stars (M > 150 Msun) through a collisional runaway. I quickly review the standard theory of stellar collisions, covering both the stellar dynamics of dense clusters and the hydrodynamics of encounters between stars. The conditions for collisions to take place at a significant rate are relatively well understood for idealised spherical cluster models without initial mass segregation, devoid of gas and composed of main-sequence (MS) stars. In this simplified situation, 2-body relaxation drives core collapse through mass segregation and a collisional phase ensues if the core collapse time is shorter than the MS lifetime of the most massive stars initially present. The outcome of this phase is still highly uncertain. A more realistic situation is that of a cluster still containing large amounts of interstellar gas from which stars are accreting. As stellar masses increase, the central regions of the cluster contracts. This little-explored mechanism can potentially lead to very high stellar densities but it is likely that, except for very rich systems, the contraction is halted by few-body interactions before collisions set in. A complete picture, combining both scenarios, will need to address many uncertainties, including the role of cluster sub-structure, the dynamical effect of interstellar gas, non-MS stars and the structure and evolution of merged stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا