No Arabic abstract
Recent observations of the cosmic microwave background (CMB) have extended the measured power spectrum to higher multipoles $lgtrsim$1000, and there appears to be possible evidence for excess power on small angular scales. The primordial magnetic field (PMF) can strongly affect the CMB power spectrum and the formation of large scale structure. In this paper, we calculate the CMB temperature anisotropies generated by including a power-law magnetic field at the photon last-scattering surface (PLSS). We then deduce an upper limit on the PMF based on our theoretical analysis of the power excess on small angular scales. We have taken into account several important effects such as the modified matter sound speed in the presence of a magnetic field. An upper limit to the field strength of $|B_lambda|lesssim$ 4.7 nG at the present scale of 1 Mpc is deduced. This is obtained by comparing the calculated theoretical result including the Sunyaev-Zeldovich (SZ) effect with recent observed data on the small-scale CMB anisotropies from the $Wilkinson Microwave Anisotropy Probe$ (WMAP), the Cosmic Background Imager (CBI), and the Arcminute Cosmology Bolometer Array Receiver (ACBAR). We discuss several possible mechanisms for the generation and evolution of the PMF.
Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-Gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10^{-29} and 10^{-19}, respectively. Observational limits on CMB non-Gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.
We study the effect of a violation of the strong equivalence principle (SEP) on the cosmic microwave background (CMB). Such a violation would modify the weight of baryons in the primordial gravitational potentials and hence their impact in the establishment of the photon-baryon plasma acoustic oscillations before recombination. This cosmological Nordtvedt effect alters the odd peaks height of the CMB temperature anisotropy power spectrum. A gravitational baryonic mass density of the universe may already be inferred at the first peak scale from the analysis of WMAP data. Experimental constraints on a primordial SEP violation are derived from a comparison with the universes inertial baryonic mass density measured either in a full analysis of the CMB, or in the framework of the standard big bang nucleosynthesis (BBN).
Cosmic string networks generate cosmological perturbations actively throughout the history of the universe. Thus, the string sourced anisotropy of the cosmic microwave background is not affected by Silk damping as much as the anisotropy seeded by inflation. The spectrum of perturbations generated by strings does not match the observed CMB spectrum on large angular scales (l<1000) and is bounded to contribute no more than 10% of the total power on those scales. However, when this bound is marginally saturated, the anisotropy created by cosmic strings on small angular scales l>2000 will dominate over that created by the primary inflationary perturbations. This range of angular scales in the CMB is presently being measured by a number of experiments; their results will test this prediction of cosmic string networks soon.
If primordial black holes (PBHs) form directly from inhomogeneities in the early Universe, then the number in the mass range $10^5 -10^{12}M_{odot}$ is severely constrained by upper limits to the $mu$ distortion in the cosmic microwave background (CMB). This is because inhomogeneities on these scales will be dissipated by Silk damping in the redshift interval $5times 10^4lesssim zlesssim2times 10^6$. If the primordial fluctuations on a given mass scale have a Gaussian distribution and PBHs form on the high-$sigma$ tail, as in the simplest scenarios, then the $mu$ constraints exclude PBHs in this mass range from playing any interesting cosmological role. Only if the fluctuations are highly non-Gaussian, or form through some mechanism unrelated to the primordial fluctuations, can this conclusion be obviated.
Numerical simulations and analytical models suggest that infinite cosmic strings produce cosmic string loops of all sizes with a given power-law. Precise estimations of the power-law exponent are still matter of debate while numerical simulations do not incorporate all the radiation and back-reaction effects expected to affect the network at small scales. Previously it has been shown, using a Boltzmann approach, that depending on the steepness of the loop production function and the gravitational back-reaction scale, a so-called Extra Population of Small Loops (EPSL) can be generated in the loop number density. We propose a framework to study the influence of this extra population of small loops on the Stochastic Background of Gravitational Waves (SBGW). We show that this extra population can have a significant signature at frequencies higher than $H_0(Gamma Gmu)^{-1}$ where $Gamma$ is of order $50$ and $H_0$ is the Hubble constant. We propose a complete classification of the gravitational wave power spectra expected from cosmic strings into four classes, including the model of Blanco-Pillado, Olum and Shlaer and the model of Lorenz, Ringeval and Sakellariadou. Finally we show that given the uncertainties on the Polchinski-Rocha exponents, two hybrid classes of gravitational wave power spectrum can be considered giving very different predictions for the SBGW.