Do you want to publish a course? Click here

Limits on primordial black holes from $mu$ distortions in cosmic microwave background

99   0   0.0 ( 0 )
 Added by Tomohiro Nakama
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

If primordial black holes (PBHs) form directly from inhomogeneities in the early Universe, then the number in the mass range $10^5 -10^{12}M_{odot}$ is severely constrained by upper limits to the $mu$ distortion in the cosmic microwave background (CMB). This is because inhomogeneities on these scales will be dissipated by Silk damping in the redshift interval $5times 10^4lesssim zlesssim2times 10^6$. If the primordial fluctuations on a given mass scale have a Gaussian distribution and PBHs form on the high-$sigma$ tail, as in the simplest scenarios, then the $mu$ constraints exclude PBHs in this mass range from playing any interesting cosmological role. Only if the fluctuations are highly non-Gaussian, or form through some mechanism unrelated to the primordial fluctuations, can this conclusion be obviated.

rate research

Read More

Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-Gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10^{-29} and 10^{-19}, respectively. Observational limits on CMB non-Gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.
We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and cold intergalactic electrons. This signal is of the $y$-type and is dominated by contributions arising from the reionized era. We stress that it is not shadowed by the thermal SZ effect which has no equivalent for polarization. We decompose its angular dependence into $E$- and $B$-modes, and we calculate the corresponding power spectra, both exactly and using a suitable Limber approximation that allows a simpler numerical evaluation. We find that $B$-modes are of the same order of magnitude as $E$-modes. Both spectra are relatively flat, peaking around $ell=280$, and their overall amplitude is directly related to the optical depth to reionization. Moreover, we find this effect to be one order of magnitude larger than the non-linear kinetic Sunyaev-Zeldovich effect in galaxy clusters. Finally, we discuss how to improve the detectability of our signal by cross-correlating it with other quantities sourced by the flow of intergalactic electrons.
Primordial black holes (PBHs) are of fundamental interest in cosmology and astrophysics, and have received much attention as a dark matter candidate and as a potential source of gravitational waves. One possible PBH formation mechanism is the gravitational collapse of cosmic strings. Thus far, the entirety of the literature on PBH production from cosmic strings has focused on the collapse of (quasi)circular cosmic string loops, which make up only a tiny fraction of the cosmic loop population. We demonstrate here a novel PBH formation mechanism: the collapse of a small segment of cosmic string in the neighbourhood of a cusp. Using the hoop conjecture, we show that collapse is inevitable whenever a cusp appears on a macroscopically-large loop, forming a PBH whose rest mass is smaller than the mass of the loop by a factor of the dimensionless string tension squared, $(Gmu)^2$. Since cusps are generic features of cosmic string loops, and do not rely on finely-tuned loop configurations like circular collapse, this implies that cosmic strings produce PBHs in far greater numbers than has previously been recognised. The resulting PBHs are highly spinning and boosted to ultrarelativistic velocities; they populate a unique region of the BH mass-spin parameter space, and are therefore a smoking gun observational signature of cosmic strings. We derive new constraints on $Gmu$ from the evaporation of cusp-collapse PBHs, and update existing constraints on $Gmu$ from gravitational-wave searches.
The fraction of the Universe going into primordial black holes (PBHs) with initial mass M_* approx 5 times 10^{14} g, such that they are evaporating at the present epoch, is strongly constrained by observations of both the extragalactic and Galactic gamma-ray backgrounds. However, while the dominant contribution to the extragalactic background comes from the time-integrated emission of PBHs with initial mass M_*, the Galactic background is dominated by the instantaneous emission of those with initial mass slightly larger than M_* and current mass below M_*. Also, the instantaneous emission of PBHs smaller than 0.4 M_* mostly comprises secondary particles produced by the decay of directly emitted quark and gluon jets. These points were missed in the earlier analysis by Lehoucq et al. using EGRET data. For a monochromatic PBH mass function, with initial mass (1+mu) M_* and mu << 1, the current mass is (3mu)^{1/3} M_* and the Galactic background constrains the fraction of the Universe going into PBHs as a function of mu. However, the initial mass function cannot be precisely monochromatic and even a tiny spread of mass around M_* would generate a current low-mass tail of PBHs below M_*. This tail would be the main contributor to the Galactic background, so we consider its form and the associated constraints for a variety of scenarios with both extended and nearly-monochromatic initial mass functions. In particular, we consider a scenario in which the PBHs form from critical collapse and have a mass function which peaks well above M_*. In this case, the largest PBHs could provide the dark matter without the M_* ones exceeding the gamma-ray background limits.
Baryonic gas falling onto a primordial black hole (PBH) emits photons via the free-free process. These photons can contribute the diffuse free-free background radiation in the frequency range of the cosmic microwave background radiation (CMB). We show that the intensity of the free-free background radiation from PBHs depends on the mass and abundance of PBHs. In particular, considering the growth of a dark matter (DM) halo around a PBH by non-PBH DM particles strongly enhances the free-free background radiation. Large PBH fraction increase the signal of the free-free emission. However, large PBH fraction also can heat the IGM gas and, accordingly, suppresses the accretion rate. As a result, the free-free emission decreases when the PBH fraction is larger than 0.1. We find that the free-free emission from PBHs in the CMB and radio frequency is much lower than the CMB blackbody spectrum and the observed free-free emission component in the background radiation. Therefore, it is difficult to obtain the constraint from the free-free emission observation. However further theoretical understanding and observation on the free-free emission from cosmological origin is helpful to study the PBH abundance with the stellar mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا