Do you want to publish a course? Click here

INTEGRAL survey of the Cassiopeia region in hard X rays

91   0   0.0 ( 0 )
 Added by Peter den Hartog
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the results of a deep 1.6 Ms INTEGRAL observation of the Cassiopeia region performed from December 2003 to February 2004. Eleven sources were detected with the imager IBIS-ISGRI at energies above 20 keV, including three new hard X-ray sources. Most remarkable is the discovery of hard X-ray emission from the anomalous X-ray pulsar 4U 0142+61, which shows emission up to ~150 keV with a very hard power-law spectrum with photon index Gamma = 0.73 +/- 0.17. We derived flux upper limits for energies between 0.75 MeV and 30 MeV using archival data from the Compton telescope COMPTEL. In order to reconcile the very hard spectrum of 4U 0142+61 measured by INTEGRAL with the COMPTEL upper limits, the spectrum has to bend or break between ~75 keV and ~750 keV. 1E 2259+586, another anomalous X-ray pulsar in this region, was not detected. INTEGRAL and COMPTEL upper limits are provided. The new INTEGRAL sources are IGR J00370+6122 and IGR J00234+6144. IGR J00370+6122 is a new supergiant X-ray binary with an orbital period of 15.665 +/- 0.006 days, derived from RXTE All-Sky Monitor data. Archival BeppoSAX Wide-Field Camera data yielded four more detections. IGR J00234+6144 still requires a proper identification. Other sources for which INTEGRAL results are presented are high-mass X-ray binaries 2S 0114+650, Gamma~Cas, RX J0146.9+6121 and 4U 2206+54, intermediate polar V709 Cas and 1ES 0033+595, an AGN of the BL-Lac type. For each of these sources the hard X-ray spectra are fitted with different models and compared with earlier published results.



rate research

Read More

We present results of an all-sky hard X-ray survey based on almost four years of observations with the IBIS telescope on board the INTEGRAL observatory. The dead time-corrected exposure of the survey is ~33 Ms. Approximately 12% and 80% of the sky have been covered to limiting fluxes lower than 1 and 5 mCrab, respectively. Our catalog of detected sources includes 400 objects, 339 of which exceed a 5 sigma detection threshold on the time-averaged map of the sky and the rest were detected in various subsamples of exposures. Among the identified sources, 213 are Galactic (87 low-mass X-ray binaries, 74 high-mass X-ray binaries, 21 cataclysmic variables, 6 coronally active stars, and other types) and 136 are extragalactic, including 131 active galactic nuclei (AGNs) and 3 clusters of galaxies. We obtained number-flux functions for AGNs and Galactic sources. The logN-logS relation of AGNs (excluding blazars) is based on 69 sources with fluxes higher than S_lim=1.1 x 10^{-11} erg/s/cm^2 (~0.8 mCrab) in the 17-60 keV energy band. The cumulative number-flux function of AGNs located at Galactic latitudes $|b|>5^circ$, where the survey is characterized by high identification completeness, can be described by a power law with a slope of 1.62 +/- 0.15 and normalization of (5.7 +/- 0.7) x 10^{-3} sources per deg^2 at fluxes >1.43 x 10^{-11} erg/s/cm^2 (>1 mCrab). AGNs with fluxes higher than S_lim make up ~1% of the cosmic X-ray background at 17-60 keV. We present evidence of strong inhomogeneity in the spatial distribution of nearby (<70 Mpc) AGNs, which reflects the large-scale structure in the local Universe.
The INTEGRAL archive developed at INAF-IASF Milano with the available public observations from late 2002 to 2016 is investigated to extract the X-ray properties of 58 High Mass X-ray Binaries (HMXBs). This sample consists of sources hosting either a Be star (Be/XRBs) or an early-type supergiant companion (SgHMXBs), including the Supergiant Fast X-ray Transients (SFXTs). INTEGRAL light curves (sampled at 2 ks) are used to build their hard X-ray luminosity distributions, returning the source duty cycles, the range of variability of the X-ray luminosity and the time spent in each luminosity state. The phenomenology observed with INTEGRAL, together with the source variability at soft X-rays taken from the literature, allows us to obtain a quantitative overview of the main sub-classes of massive binaries in accretion (Be/XRBs, SgHMXBs and SFXTs). Although some criteria can be derived to distinguish them, some SgHMXBs exist with intermediate properties, bridging together persistent SgHMXBs and SFXTs.
The results of optical identifications of five hard X-ray sources in the Galactic plane region from the INTEGRAL all-sky survey are presented. The X-ray data on one source (IGRJ20216+4359) are published for the first time. The optical observations were performed with 1.5-m RTT-150 telescope (TUBITAK National Observatory, Antalya, Turkey) and 6-m BTA telescope (Special Astrophysical Observatory, Nizhny Arkhyz, Russia). A blazar, three Seyfert galaxies, and a high-mass X-ray binary are among the identified sources.
We present a catalog of hard X-ray sources in a square-degree region surveyed by NuSTAR in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and typical and maximum exposure depths of 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of $5times10^{-14}$ and $4times10^{-14}$ erg s$^{-1}$ cm$^{-2}$ in the 3-10 and 10-20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected and ten are detected with low significance; eight of the 38 sources are expected to be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multi-wavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of $approx$10-20 keV, consistent with the Galactic Ridge X-ray emission spectrum but lower than temperatures of CVs near the Galactic Center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic Center. The NuSTAR log$N$-log$S$ distribution in the 10-20 keV band is consistent with the distribution measured by Chandra at 2-10 keV if the average source spectrum is assumed to be a thermal model with $kTapprox15$~keV, as observed for the CV candidates.
75 - G. Belanger 2003
This letter presents the first results of an observational campaign to study the Galactic Centre with INTEGRAL. The mosaicked images obtained with the IBIS/ISGRI coded aperture instrument in the energy ranges 20-40 and 40-100 keV, give a yet unseen view of the high-energy sources of this region in hard X- and gamma-rays with an angular resolution of 12 arcmin (FWHM). We report on the discovery of a source, IGR J17456-2901, coincident with the Galactic Nucleus SgrA* to within 0.9 arcmin. Located at R.A.(J2000.0) = 17h45m38.5s, Dec.(J2000.0) = -29:01:15, the source is visible up to about 100 keV with a 20-100 keV luminosity at 8 kpc of (2.89 +/- 0.41) x 10^35 ergs/s. Although the new INTEGRAL source cannot unequivocally be associated to the Galactic Nucleus, this is the first report of significant hard X-ray emission from within the inner 10 arcmin of the Galaxy and a contribution from the galactic supermassive black hole itself cannot be excluded.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا