No Arabic abstract
By the time, in 1937, the Swiss astronomer Zwicky measured the velocity dispersion of the Coma cluster of galaxies, astronomers somehow got acquainted with the idea that the universe is filled by some kind of dark matter. After almost a century of investigations, we have learned two things about dark matter, (i) it has to be non-baryonic -- that is, made of something new that interact with normal matter only by gravitation-- and, (ii) that its effects are observed in stellar systems when and only when their internal acceleration of gravity falls below a fix value a0=1.2x10-8 cm s-2. This systematic, more than anything else, tells us we might be facing a failure of the law of gravity in the weak field limit rather then the effects of dark matter. Thus, in an attempt to avoid the need for dark matter, the Modified Newtonian Dynamics. MOND posits a breakdown of Newtons law of gravity (or inertia) below a0, after which the dependence with distance became linear. Despite many attempts, MOND resisted stubbornly to be falsified as an alternative to dark matter and succeeds in explaining the properties of an impressively large number of objects without invoking the presence of non-baryonic dark matter. In this paper, I will review the basics of MOND and its ability to explain observations without the need of dark matter.
Modified Newtonian dynamics can be considered as an effect derived from a squeezable extra dimension space. The third law of Newtonian dynamics can be managed to remain valid in the 5-space. The critical acceleration parameter $a_0$ appears naturally as the bulk acceleration that has to do with the expanding universe in this setup. A simple toy model is presented in this Letter to show that consistent theory can be built with the help of the extra dimensional space.
We look for observational signatures that could discriminate between Newtonian and modified Newtonian (MOND) dynamics in the Milky Way, in view of the advent of large astrometric and spectroscopic surveys. Indeed, a typical signature of MOND is an apparent disk of phantom dark matter, which is uniquely correlated with the visible disk-density distribution. Due to this phantom dark disk, Newtonian models with a spherical halo have different signatures from MOND models close to the Galactic plane. The models can thus be differentiated by measuring dynamically (within Newtonian dynamics) the disk surface density at the solar radius, the radial mass gradient within the disk, or the velocity ellipsoid tilt angle above the Galactic plane. Using the most realistic possible baryonic mass model for the Milky Way, we predict that, if MOND applies, the local surface density measured by a Newtonist will be approximately 78 Msun/pc2 within 1.1 kpc of the Galactic plane, the dynamically measured disk scale-length will be enhanced by a factor of 1.25 with respect to the visible disk scale-length, and the local vertical tilt of the velocity ellipsoid at 1 kpc above the plane will be approximately 6 degrees. None of these tests can be conclusive for the present-day accuracy of Milky Way data, but they will be of prime interest with the advent of large surveys such as GAIA.
Modified Newtonian Dynamics is an empirical modification to Poissons equation which has had success in accounting for the `gravitational field $Phi$ in a variety of astrophysical systems. The field $Phi$ may be interpreted in terms of the weak field limit of a variety of spacetime geometries. Here we consider three of these geometries in a more comprehensive manner and look at the effect on timelike and null geodesics. In particular we consider the Aquadratic Lagrangian (AQUAL) theory, Tensor-Vector-Scalar (TeVeS) theory and Generalized Einstein-{AE}ther (GEA) theory. We uncover a number of novel features, some of which are specific to the theory considered while others are generic. In the case of AQUAL and TeVeS theories, the spacetime exhibits an excess (AQUAL) or deficit (TeVeS) solid angle akin to the case of a Barriola-Vilenkin global monopole. In the case of GEA, a disformal symmetry of the action emerges in the limit of $gradPhirightarrow 0$. Finally, in all theories studied, massive particles can never reach spatial infinity while photons can do so only after experiencing infinite redshift.
We have tested a previous analytical estimate of the dynamical friction timescale in Modified Newtonian Dynamics (MOND) with fully non-linear N-body simulations. The simulations confirm that the dynamical friction timescale is significantly shorter in MOND than in equivalent Newtonian systems, i.e. systems with the same phase-space distribution of baryons and additional dark matter. An apparent conflict between this result and the long timescales determined for bars to slow and mergers to be completed in previous N-body simulations of MOND systems is explained. The confirmation of the short dynamical-friction timescale in MOND underlines the challenge that the Fornax dwarf spheroidal poses to the viability of MOND.
We describe some results obtained with N-MODY, a code for N-body simulations of collisionless stellar systems in modified Newtonian dynamics (MOND). We found that a few fundamental dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter. In particular, violent relaxation, phase mixing and galaxy merging take significantly longer in MOND than in Newtonian gravity, while dynamical friction is more effective in a MOND system than in an equivalent Newtonian system with dark matter.