Do you want to publish a course? Click here

A Spitzer View of Massive Galaxies at z~1-3

77   0   0.0 ( 0 )
 Added by Casey Papovich
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

I discuss constraints on star--formation and AGN activity in massive galaxies at z~1-3 using observations from the Spitzer Space Telescope. In particular I focus on a sample of distant red galaxies (DRGs) with J-K>2.3 in GOODS-S. Based on their ACS, ISAAC, and IRAC photometry, the DRGs have typical stellar masses >10^11 Msol. Interestingly, the majority (>50%) of these objects have 24 micron detections. If attributed to star formation, this implies SFRs of ~100-1000 Msol/yr. Thus, massive galaxies at z~1.5-3 have specific SFRs equal to or exceeding the global average value at that epoch. In contrast, galaxies with >10^11 Msol at z~0.3-0.75 have specific SFRs less than the global average, and more than an order of magnitude lower than that at z~1.5-3. Thus, the bulk of assembly of massive galaxies is largely complete by z~1.5. At the same time, based on the X-ray luminosities and near-IR colors, as many as 25% of the massive galaxies at z>1.5 host AGN, implying that the growth of supermassive black holes coincides with massive-galaxy assembly. The analysis of high-redshift galaxies depends on bolometric corrections between the observed 24 micron data and total IR luminosity. I review some of the sources of the (significant) uncertainties on these corrections, and discuss improvements for the future.

rate research

Read More

We use a 24 micron selected sample containing more than 8,000 sources to study the evolution of star-forming galaxies in the redshift range from z=0 to z~3. We obtain photometric redshifts for most of the sources in our survey using a method based on empirically-built templates spanning from ultraviolet to mid-infrared wavelengths. The accuracy of these redshifts is better than 10% for 80% of the sample. The derived redshift distribution of the sources detected by our survey peaks at around z=0.6-1.0 (the location of the peak being affected by cosmic variance), and decays monotonically from z~1 to z~3. We have fitted infrared luminosity functions in several redshift bins in the range 0<z<~3. Our results constrain the density and/or luminosity evolution of infrared-bright star-forming galaxies. The typical infrared luminosity (L*) decreases by an order of magnitude from z~2 to the present. The cosmic star formation rate (SFR) density goes as (1+z)^{4.0pm0.2} from z=0 to z=0.8. From z=0.8 to z~1.2, the SFR density continues rising with a smaller slope. At 1.2<z<3, the cosmic SFR density remains roughly constant. The SFR density is dominated at low redshift (z<0.5) by galaxies which are not very luminous in the infrared (L_TIR<1.e11 L_sun, where L_TIR is the total infrared luminosity, integrated from 8 to 1000 micron). The contribution from luminous and ultraluminous infrared galaxies (L_TIR>1.e11 L_sun) to the total SFR density increases steadily from z~0 up to z~2.5, forming at least half of the newly-born stars by z~1.5. Ultraluminous infrared galaxies (L_TIR>1.e12 L_sun) play a rapidly increasing role for z>~1.3.
166 - M. Lacy 2018
We present images taken using the Gemini South Adaptive Optics Imager (GSAOI) with the Gemini Multiconjugate Adaptive Optics System (GeMS) in three 2 arcmin$^2$ fields in the Spitzer Extragalactic Representative Volume Survey. These GeMS/GSAOI observations are among the first $approx 0.1^{}$ resolution data in the near-infrared spanning extragalactic fields exceeding $1.5^{prime}$ in size. We use these data to estimate galaxy sizes, obtaining results similar to those from studies with the Hubble Space Telescope, though we find a higher fraction of compact star forming galaxies at $z>2$. To disentangle the star-forming galaxies from active galactic nuclei (AGN), we use multiwavelength data from surveys in the optical and infrared, including far-infrared data from Herschel, as well as new radio continuum data from the Australia Telescope Compact Array and Very Large Array. We identify ultraluminous infrared galaxies (ULIRGs) at $z sim 1-3$, which consist of a combination of pure starburst galaxies and Active Galactic Nuclei (AGN)/starburst composites. The ULIRGs show signs of recent merger activity, such as highly disturbed morphologies and include a rare candidate triple AGN. We find that AGN tend to reside in hosts with smaller scale sizes than purely star-forming galaxies of similar infrared luminosity. Our observations demonstrate the potential for MCAO to complement the deeper galaxy surveys to be made with the James Webb Space Telescope.
101 - Fernando Buitrago 2008
We measure and analyse the sizes of 82 massive (M >= 10^11 M_Sun) galaxies at 1.7<z<3 utilizing deep HST NICMOS data taken in the GOODS North and South fields. Our sample provides the first statistical study of massive galaxy sizes at z>2. We split our sample into disk-like (Sersic index n<=2) and spheroid-like (Sersic index n>2) galaxies, and find that at a given stellar mass, disk-like galaxies at z~2.3 are a factor of 2.6+/-0.3 smaller than present day equal mass systems, and spheroid-like galaxies at the same redshift are 4.3+/-0.7 times smaller than comparatively massive elliptical galaxies today. We furthermore show that the stellar mass densities of very massive galaxies at z~2.5 are similar to present-day globular clusters with values ~2x10^10 M_Sun kpc^-3
78 - T. Wang , D. Elbaz , C. Schreiber 2015
We introduce a new color-selection technique to identify high-redshift, massive galaxies that are systematically missed by Lyman-break selection. The new selection is based on the H_{160} and IRAC 4.5um bands, specifically H - [4.5] > 2.25 mag. These galaxies, dubbed HIEROs, include two major populations that can be separated with an additional J - H color. The populations are massive and dusty star-forming galaxies at z > 3 (JH-blue) and extremely dusty galaxies at z < 3 (JH-red). The 350 arcmin^2 of the GOODS-N and GOODS-S fields with the deepest HST/WFC3 and IRAC data contain 285 HIEROs down to [4.5] < 24 mag. We focus here primarily on JH-blue (z > 3) HIEROs, which have a median photometric redshift z ~4.4 and stellar massM_{*}~10^{10.6} Msun, and are much fainter in the rest-frame UV than similarly massive Lyman-break galaxies (LBGs). Their star formation rates (SFRs) reaches ~240 Msun yr^{-1} leading to a specific SFR, sSFR ~4.2 Gyr^{-1}, suggesting that the sSFRs for massive galaxies continue to grow at z > 2 but at a lower growth rate than from z=0 to z=2. With a median half-light radius of 2 kpc, including ~20% as compact as quiescent galaxies at similar redshifts, JH-blue HIEROs represent perfect star-forming progenitors of the most massive (M_{*} > 10^{11.2} Msun) compact quiescent galaxies at z ~ 3 and have the right number density. HIEROs make up ~60% of all galaxies with M_{*} > 10^{10.5} Msun identified at z > 3 from their photometric redshifts. This is five times more than LBGs with nearly no overlap between the two populations. While HIEROs make up 15-25% of the total SFR density at z ~ 4-5, they completely dominate the SFR density taking place in M_{*} >10^{10.5} Msun galaxies, and are therefore crucial to understanding the very early phase of massive galaxy formation.
We have used high-resolution, HST WFC3/IR, near-infrared imaging to conduct a detailed bulge-disk decomposition of the morphologies of ~200 of the most massive (M_star > 10^11 M_solar) galaxies at 1<z<3 in the CANDELS-UDS field. We find that, while such massive galaxies at low redshift are generally bulge-dominated, at redshifts 1<z<2 they are predominantly mixed bulge+disk systems, and by z>2 they are mostly disk-dominated. Interestingly, we find that while most of the quiescent galaxies are bulge-dominated, a significant fraction (25-40%) of the most quiescent galaxies, have disk-dominated morphologies. Thus, our results suggest that the physical mechanisms which quench star-formation activity are not simply connected to those responsible for the morphological transformation of massive galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا