No Arabic abstract
We have used high-resolution, HST WFC3/IR, near-infrared imaging to conduct a detailed bulge-disk decomposition of the morphologies of ~200 of the most massive (M_star > 10^11 M_solar) galaxies at 1<z<3 in the CANDELS-UDS field. We find that, while such massive galaxies at low redshift are generally bulge-dominated, at redshifts 1<z<2 they are predominantly mixed bulge+disk systems, and by z>2 they are mostly disk-dominated. Interestingly, we find that while most of the quiescent galaxies are bulge-dominated, a significant fraction (25-40%) of the most quiescent galaxies, have disk-dominated morphologies. Thus, our results suggest that the physical mechanisms which quench star-formation activity are not simply connected to those responsible for the morphological transformation of massive galaxies.
We have used deep, HST, near-IR imaging to study the morphological properties of the most massive galaxies at high z, modelling the WFC3/IR H-band images of the ~200 galaxies in the CANDELS-UDS field with 1 < z_phot < 3, and stellar masses M_star > 10^11 M_sun. We have used both single-Sersic and bulge+disk models, have investigated the errors/biases introduced by uncertainties in the background and the PSF, and have obtained formally-acceptable model fits to >90% of the galaxies. Our results indicate that these massive galaxies at 1 < z < 3 lie both on and below the local size-mass relation, with a median R_e~2.6 kpc, a factor of ~2.3 smaller than comparably-massive local galaxies. Moreover, we find that bulge-dominated objects in particular show evidence for a growing bimodality in the size-mass relation with increasing z, and by z > 2 the compact bulges display effective radii a factor ~4 smaller than local ellipticals of comparable mass. These trends appear to extend to the bulge components of disk-dominated galaxies, and vice versa. We also find that, while such massive galaxies at low z are bulge-dominated, at 1 < z < 2 they are predominantly mixed bulge+disk systems, and by z > 2 they are mostly disk-dominated. The majority of the disk-dominated galaxies are actively forming stars, but this is also true for many of the bulge-dominated systems. Interestingly, however, while most of the quiescent galaxies are bulge-dominated, we find that a significant fraction (25-40%) of the most quiescent galaxies have disk-dominated morphologies. Thus, while our results show that the massive galaxy population is undergoing dramatic changes at this crucial epoch, they also suggest that the physical mechanisms which quench star-formation activity are not simply connected to those responsible for the morphological transformation of massive galaxies into present-day giant ellipticals.
We present the results of a new and improved study of the morphological and spectral evolution of massive galaxies over the redshift range 1<z<3. Our analysis is based on a bulge-disk decomposition of 396 galaxies with Mstar>10^11 Msolar from the CANDELS WFC3/IR imaging within the COSMOS and UKIDSS UDS survey fields. We find that, by modelling the H(160) image of each galaxy with a combination of a de Vaucouleurs bulge (Sersic index n=4) and an exponential disk (n=1), we can then lock all derived morphological parameters for the bulge and disk components, and successfully reproduce the shorter-wavelength J(125), i(814), v(606) HST images simply by floating the magnitudes of the two components. This then yields sub-divided 4-band HST photometry for the bulge and disk components which, with no additional priors, is well described by spectrophotometric models of galaxy evolution. Armed with this information we are able to properly determine the masses and star-formation rates for the bulge and disk components, and find that: i) from z=3 to z=1 the galaxies move from disk-dominated to increasingly bulge-dominated, but very few galaxies are pure bulges/ellipticals by z=1; ii) while most passive galaxies are bulge-dominated, and most star-forming galaxies disk-dominated, 18+/-5% of passive galaxies are disk-dominated, and 11+/-3% of star-forming galaxies are bulge-dominated, a result which needs to be explained by any model purporting to connect star-formation quenching with morphological transformations; iii) there exists a small but significant population of pure passive disks, which are generally flatter than their star-forming counterparts (whose axial ratio distribution peaks at b/a~0.7); iv) flatter/larger disks re-emerge at the highest star-formation rates, consistent with recent studies of sub-mm galaxies, and with the concept of a maximum surface-density for star-formation activity.
Using deep 100-160 micron observations in GOODS-S from the GOODS-H survey, combined with HST/WFC3 NIR imaging from CANDELS, we present the first morphological analysis of a complete, FIR selected sample of 52 ULIRGs at z~2. We also make use of a comparison sample of galaxies without Herschel detections but with the same z and magnitude distribution. Our visual classifications of these two samples indicate that the fraction of objects with disk and spheroid morphologies is roughly the same but that there are significantly more mergers, interactions, and irregular galaxies among the ULIRGs. The combination of disk and irregular/interacting morphologies suggests that early stage interactions and minor mergers could play an important role in ULIRGs at z~2. We compare these fractions with those of a z~1 sample across a wide luminosity range and find that the fraction of disks decreases systematically with L_IR while the fraction of mergers and interactions increases, as has been observed locally. At comparable luminosities, the fraction of ULIRGs with various morphological classifications is similar at z~2 and z~1. We investigate the position of the ULIRGs, along with 70 LIRGs, on the specific star formation rate versus redshift plane, and find 52 systems to be starbursts (lie more than a factor of 3 above the main sequence relation). The morphologies of starbursts are dominated by interacting and merging systems (50%). If irregular disks are included as potential minor mergers, then we find that up to 73% of starbursts are involved in a merger or interaction at some level. Although the final coalescence of a major merger may not be required for the high luminosities of ULIRGs at z~2 as is the case locally, the large fraction of interactions at all stages and potential minor mergers suggest that the high star formation rates of ULIRGs are still largely externally triggered at z~2.
[Abridged] Using public data from the NMBS and CANDELS surveys, we study the population of massive galaxies at z>3 to identify the potential progenitors of z~2 compact, massive, quiescent (CMQ) galaxies, furthering our understanding of the evolution of massive galaxies. Our work is enabled by high-resolution CANDELS images and accurate photometric redshifts, stellar masses and star formation rates (SFRs) from 37-band NMBS photometry. The total number of z>3 massive galaxies is consistent with the number of massive quiescent (MQ) galaxies at z~2, implying that the SFRs for all of these galaxies must be much lower by z~2. We discover 4 CMQ galaxies at z>3, pushing back the time for which such galaxies have been observed. However, the volume density for these galaxies is significantly less than that of galaxies at z<2 with similar masses, SFRs, and sizes, implying that additional CMQ galaxies must be created in the ~1 Gyr between z=3 and z=2. We find 5 star-forming galaxies at z~3 that are compact (Re<1.4 kpc) and have stellar mass M*>10^(10.6)Msun, likely to become members of the CMQ galaxy population at z~2. We evolve the stellar masses and SFRs of each individual z>3 galaxy adopting 5 different star formation histories (SFHs) and studying the resulting population of massive galaxies at z=2.3. We find that declining or truncated SFHs are necessary to match the observed number density of MQ galaxies at z~2, whereas a constant SFH results in a number density significantly smaller than observed. All of our assumed SFHs imply number densities of CMQ galaxies at z~2 that are consistent with the observed number density. Better agreement with the observed number density of CMQ galaxies at z~2 is obtained if merging is included in the analysis and better still if star formation quenching is assumed to shortly follow the merging event, as implied by recent models of formation of MQ galaxies.
We have constructed a mass-selected sample of Mstar>10^11Msolar galaxies at 1<z<3 in the CANDELS UDS and COSMOS fields and have decomposed these systems into their separate bulge and disk components according to their H(160)-band morphologies. By extending this analysis to multiple bands we have been able to conduct individual bulge and disk component SED fitting which has provided us with stellar-mass and star-formation rate estimates for the separate bulge and disk components. These have been combined with size measurements to explore the evolution of these massive high-redshift galaxies. By utilising the new decomposed stellar-mass estimates, we confirm that the bulge components display a stronger size evolution than the disks. This can be seen from both the fraction of bulge components which lie below the local relation and the median sizes of the bulge components, where the bulges are a median factor of 2.93+/-0.32 times smaller than similarly massive local galaxies at 1<z<2 and 3.41+/-0.58 smaller at 2<z<3; for the disks the corresponding factors are 1.65+/-0.14 and 1.99+/-0.25. Moreover, by splitting our sample into the passive and star-forming bulge and disk sub-populations and examining their sizes as a fraction of their present-day counter-parts, we find that the star-forming and passive bulges are equally compact, star-forming disks are larger, while the passive disks have intermediate sizes. This trend is not evident when classifying galaxy morphology on the basis of single-Sersic fits and adopting the overall star-formation rates. Finally, by evolving the star-formation histories of the passive disks back to the redshifts when the passive disks were last active, we show that the passive and star-forming disks have consistent sizes at the relevant epoch. These trends need to be reproduced by any mechanisms which attempt to explain the morphological evolution of galaxies.