Do you want to publish a course? Click here

Metallicity vs. Be phenomenon relation in the solar neighborhood

60   0   0.0 ( 0 )
 Added by Yves Fremat
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fast rotation seems to be the mayor factor to trigger the Be phenomenon. Surface fast rotation can be favored by initial formation conditions, such as abundance of metals. We have observed 118 Be stars up to the apparent magnitudes V=9 mag. Models of fast rotating atmospheres and evolutionary tracks were used to interpret the stellar spectra and to determine the stellar fundamental parameters. Since the studied stars are formed in regions that are separated enough to imply some non negligible gradient of galactic metallicity, we study the effects of possible incidence of this gradient on the nature as rotators of the studied stars.



rate research

Read More

The age-metallicity relation for F and G dwarf stars in the solar neighborhood, based on the stellar metallicity data of Edvardsson et al. (1993), shows an apparent scatter that is larger than expected considering the uncertainties in metallicities and ages. A number of theoretical models have been put forward to explain the large scatter. However, we present evidence, based on Edvardsson et al. (1993) data, along with Hipparcos parallaxes and new age estimates, that the scatter in the age-metallicity relation depends on the distance to the stars in the sample, such that stars within 30 pc of the Sun show significantly less scatter in [Fe/H]. Stars of intermediate age from the Edvardsson et al. sample at distances 30-80 pc from the Sun are systematically more metal-poor than those more nearby. We also find that the slope of the apparent age-metallicity relation is different for stars within 30 pc than for those stars more distant. These results are most likely an artifact of selection biases in the Edvardsson et al. star sample. We conclude that the intrinsic dispersion in metallicity at fixed age is < 0.15 dex, consistent with the < 0.1 dex scatter for Galactic open star clusters and the interstellar medium.
Observations of 25 Ori much expand the picture derived of other early-type Be stars with BRITE and SMEI. Two instead of one difference frequencies rule the variability: (a) The lower one, 0.0129 c/d, is the frequency of events with full amplitudes of 100-200 mmag which may signal mass loss possibly driven by the higher one, 0.1777 c/d. (b) Much of the entire power spectrum is a tightly woven network of combination frequencies: (i) Below 0.25,c/d, numerous frequencies are difference frequencies. (ii) Many frequencies above 2.5 c/d can be represented as sum frequencies and in a few cases as harmonics. (iii) Many frequencies between 1.1 and 1.75,c/d can be portrayed as parents of combination frequencies. The number and fraction of combination frequencies increases steeply with decreasing amplitude and and accuracy of the frequency matching.
About 20% of stars in the solar vicinity are in the Hercules stream, a bundle of stars that move together with a velocity distinct from the Sun. Its origin is still uncertain. Here, we explore the possibility that Hercules is made of trojans, stars captured at L4, one the Lagrangian points of the stellar bar. Using GALAKOS--a high-resolution N-body simulation of the Galactic disk--we follow the motions of stars in the co-rotating frame of the bar and confirm previous studies on Hercules being formed by stars in co-rotation resonance with the bar. Unlike previous work, we demonstrate that the retrograde nature of trojan orbits causes the asymmetry in the radial velocity distribution, typical of Hercules in the solar vicinity. We show that trojans remain at capture for only a finite amount of time, before escaping L4 without being captured again. We anticipate that in the kinematic plane the Hercules stream will de-populate along the bar major axis and be visible at azimuthal angles behind the solar vicinity with a peak towards L4. This test can exclude the OLR origin of the Hercules stream and be validated by Gaia DR3 and DR4.
We derive stellar ages, from evolutionary tracks, and metallicities, from Stromgren photometry, for a sample of 5828 dwarf and sub-dwarf stars from the Hipparcos Catalogue. This stellar disk sample is used to investigate the age-metallicity diagram in the solar neighbourhood. Such diagrams are often used to derive a so called age-metallicity relation. Because of the size of our sample, we are able to quantify the impact on such diagrams, and derived relations, due to different selection effects. Some of these effects are of a more subtle sort, giving rise to erroneous conclusions. In particular we show that [1] the age-metallicity diagram is well populated at all ages and especially that old, metal-rich stars do exist, [2] the scatter in metallicity at any given age is larger than the observational errors, [3] the exclusion of cooler dwarf stars from an age-metallicity sample preferentially excludes old, metal-rich stars, depleting the upper right-hand corner of the age-metallicity diagram, [4] the distance dependence found in the Edvardsson et al. sample by Garnett & Kobulnicky is an expected artifact due to the construction of the original sample. We conclude that, although some of it can be attributed to stellar migration in the galactic disk, a large part of the observed scatter is intrinsic to the formation processes of stars.
We present a Mass-Luminosity Relation (MLR) for red dwarfs spanning a range of masses from 0.62 Msun to the end of the stellar main sequence at 0.08 Msun. The relation is based on 47 stars for which dynamical masses have been determined, primarily using astrometric data from Fine Guidance Sensors (FGS) 3 and 1r, white-light interferometers on the Hubble Space Telescope (HST), and radial velocity data from McDonald Observatory. For our HST/FGS sample of 15 binaries component mass errors range from 0.4% to 4.0% with a median error of 1.8%. With these and masses from other sources, we construct a V-band MLR for the lower main sequence with 47 stars, and a K-band MLR with 45 stars with fit residuals half of those of the V-band. We use GJ 831 AB as an analysis example, obtaining an absolute trigonometric parallax, pi_abs = 125.3 +/- 0.3 milliseconds of arc, with orbital elements yielding MA = 0.270 +/- 0.004 Msun and MB = 0.145 +/- 0.002 Msun. The mass precision rivals that derived for eclipsing binaries. A remaining major task is the interpretation of the intrinsic cosmic scatter in the observed MLR for low mass stars in terms of physical effects. In the meantime, useful mass values can be estimated from the MLR for the ubiquitous red dwarfs that account for 75% of all stars, with applications ranging from the characterization of exoplanet host stars to the contribution of red dwarfs to the mass of the Universe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا