Do you want to publish a course? Click here

Trojans in the Solar Neighborhood

110   0   0.0 ( 0 )
 Added by Elena D'Onghia
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

About 20% of stars in the solar vicinity are in the Hercules stream, a bundle of stars that move together with a velocity distinct from the Sun. Its origin is still uncertain. Here, we explore the possibility that Hercules is made of trojans, stars captured at L4, one the Lagrangian points of the stellar bar. Using GALAKOS--a high-resolution N-body simulation of the Galactic disk--we follow the motions of stars in the co-rotating frame of the bar and confirm previous studies on Hercules being formed by stars in co-rotation resonance with the bar. Unlike previous work, we demonstrate that the retrograde nature of trojan orbits causes the asymmetry in the radial velocity distribution, typical of Hercules in the solar vicinity. We show that trojans remain at capture for only a finite amount of time, before escaping L4 without being captured again. We anticipate that in the kinematic plane the Hercules stream will de-populate along the bar major axis and be visible at azimuthal angles behind the solar vicinity with a peak towards L4. This test can exclude the OLR origin of the Hercules stream and be validated by Gaia DR3 and DR4.

rate research

Read More

The radio source J1819+3845 underwent a period of extreme interstellar scintillation between circa 1999 and 2007. The plasma structure responsible for this scintillation was determined to be just $1$-$3,$pc from the solar system and to posses a density of $n_esim 10^2,$cm$^{-3}$ that is three orders of magnitude higher than the ambient interstellar density (de Bruyn & Macquart 2015). Here we present radio-polarimetric images of the field towards J1819+3845 at wavelengths of 0.2, 0.92 and 2$,$m. We detect an elliptical plasma globule of approximate size $1^circ times gtrsim 2^circ$ (major-axis position angle of $approx -40^circ$), via its Faraday-rotation imprint ($approx 15,$rad$,$m$^{-2}$) on the diffuse Galactic synchrotron emission. The extreme scintillation of J1819+3845 was most likely caused at the turbulent boundary of the globule (J1819+3845 is currently occulted by the globule). The origin and precise nature of the globule remain unknown. Our observations are the first time plasma structures that likely cause extreme scintillation have been directly imaged.
In the light of the new observational data related to fluorine abundances in the solar neighborhood stars, we present here chemical evolution models testing different fluorine nucleosynthesis prescriptions with the aim to best fit those new data related to the abundance ratios [F/O] vs. [O/H] and [F/Fe] vs. [Fe/H]. The adopted chemical evolution models are: i) the classical two-infall model which follows the chemical evolution of halo-thick disk and thin disk phases, ii) and the one-infall model designed only for the thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of different nucleosynthesis yield sources: AGB stars, Wolf-Rayet stars, Type II and Type Ia supernovae, and novae. We find that the fluorine production is dominated by AGB stars but the Wolf-Rayet stars are required to reproduce the trend of the observed data in the solar neighborhood by Jonsson et al. (2017a) with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of two of the Wolf-Rayet yields given by Meynet & Arnould (2000). We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] vs. [O/H] relation. The inclusion of the fluorine production by Wolf-Rayet stars seems to be essential to reproduce the observed ratio [F/O] vs [O/H] in the solar neighborhood by Jonsson et al. (2017a). Moreover, the inclusion of novae helps substantially to reproduce the observed fluorine secondary behavior.
For the past 150 years, the prevailing view of the local Interstellar Medium (ISM) was based on a peculiarity known as the Goulds Belt, an expanding ring of young stars, gas, and dust, tilted about 20$^circ$ to the Galactic plane. Still, the physical relation between local gas clouds has remained practically unknown because the distance accuracy to clouds is of the same order or larger than their sizes. With the advent of large photometric surveys and the Gaia satellite astrometric survey this situation has changed. Here we report the 3-D structure of all local cloud complexes. We find a narrow and coherent 2.7 kpc arrangement of dense gas in the Solar neighborhood that contains many of the clouds thought to be associated with the Gould Belt. This finding is inconsistent with the notion that these clouds are part of a ring, disputing the Gould Belt model. The new structure comprises the majority of nearby star-forming regions, has an aspect ratio of about 1:20, and contains about 3 million solar masses of gas. Remarkably, the new structure appears to be undulating and its 3-D distribution is well described by a damped sinusoidal wave on the plane of the Milky Way, with an average period of about 2 kpc and a maximum amplitude of about 160 pc. Our results represent a first step in the revision of the local gas distribution and Galactic structure and offer a new, broader context to studies on the transformation of molecular gas into stars.
The surface density and vertical distribution of stars, stellar remnants, and gas in the solar vicinity form important ingredients for understanding the star formation history of the Galaxy as well as for inferring the local density of dark matter by using stellar kinematics to probe the gravitational potential. In this paper we review the literature for these baryonic components, reanalyze data, and provide tables of the surface densities and exponential scale heights of main sequence stars, giants, brown dwarfs, and stellar remnants. We also review three components of gas (H2, HI, and HII), give their surface densities at the solar circle, and discuss their vertical distribution. We find a local total surface density of M dwarfs of 17.3 pm 2.3 Mo/pc^2. Our result for the total local surface density of visible stars, 27.0 pm 2.7 Mo/pc^2, is close to previous estimates due to a cancellation of opposing effects: more mass in M dwarfs, less mass in the others. The total local surface density in white dwarfs is 4.9 pm 0.6 Mo/pc^2; in brown dwarfs, it is ~1.2 Mo/pc^2. We find that the total local surface density of stars and stellar remnants is 33.4 pm 3 Mo/pc^2, somewhat less than previous estimates. We analyze data on 21 cm emission and absorption and obtain good agreement with recent results on the local amount of neutral atomic hydrogen obtained with the Planck satellite. The local surface density of gas is 13.7 pm 1.6 Mo/pc^2. The total baryonic mass surface density that we derive for the solar neighborhood is 47.1 pm 3.4 Mo/pc^2. Combining these results with others measurements of the total surface density of matter within 1-1.1 kpc of the plane, we find that the local density of dark matter is 0.013 pm 0.003Mo/pc^3.The local density of all matter is 0.097 pm 0.013 Mo/pc^3. We discuss limitations on the properties of a possible thin disk of dark matter.
88 - Kohei Hattori 2018
We report the discovery of 30 stars with extreme space velocities ($>$ 480 km/s) in the Gaia-DR2 archive. These stars are a subset of 1743 stars with high-precision parallax, large tangential velocity ($v_{tan}>$ 300 km/s), and measured line-of-sight velocity in DR2. By tracing the orbits of the stars back in time, we find at least one of them is consistent with having been ejected by the supermassive black hole at the Galactic Center. Another star has an orbit that passed near the Large Magellanic Cloud (LMC) about 200 Myr ago. Unlike previously discovered blue hypervelocity stars, our sample is metal-poor (-1.5 $<$ [Fe/H] $<$ -1.0) and quite old ($>$ 1 Gyr). We discuss possible mechanisms for accelerating old stars to such extreme velocities. The high observed space density of this population, relative to potential acceleration mechanisms, implies that these stars are probably bound to the Milky Way (MW). If they are bound, the discovery of this population would require a local escape speed of around $sim$ 600 km/s and consequently imply a virial mass of $M_{200} sim 1.4 times 10^{12} M_odot$ for the MW.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا