Do you want to publish a course? Click here

Ultraviolet-Bright, High-Redshift ULIRGS

83   0   0.0 ( 0 )
 Added by James W. Colbert
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Spitzer Space Telescope observations of the z=2.38 lya-emitter over-density associated with galaxy cluster J2143-4423, the largest known structure (110 Mpc) above z=2. We imaged 22 of the 37 known lya-emitters within the filament-like structure, using the MIPS 24um band. We detected 6 of the lya-emitters, including 3 of the 4 clouds of extended (>50 kpc) lyman alpha emission, also known as Lya Blobs. Conversion from rest-wavelength 7um to total far-infrared luminosity using locally derived correlations suggests all the detected sources are in the class of ULIRGs, with some reaching Hyper-LIRG energies. Lya blobs frequently show evidence for interaction, either in HST imaging, or the proximity of multiple MIPS sources within the Lya cloud. This connection suggests that interaction or even mergers may be related to the production of Lya blobs. A connection to mergers does not in itself help explain the origin of the Lya blobs, as most of the suggested mechanisms for creating Lya blobs (starbursts, AGN, cooling flows) could also be associated with galaxy interactions.



rate research

Read More

In the optical sky, minutes-duration transients from cosmological distances are rare. Known objects that give rise to such transients include gamma-ray bursts (GRBs), the most luminous explosions in the universe that have been detected at redshift as high as z ~ 9.4. These high-redshift GRBs and their associated emission can be used to probe the star formation and reionization history in the era of cosmic dawn. Here we report a near-infrared transient with an observed duration shorter than 245 s coincident with the luminous star-forming galaxy GN-z11 at z ~ 11. The telluric absorption shown in the near-infrared spectrum indicates its origin from above the atmosphere. We can rule out the possibility of known man-made objects or moving objects in the Solar system based on the observational information and our current understanding of the properties of these objects. Since some long-duration GRBs are associated with a bright ultraviolet (UV) or optical flash, we investigate the possibility that the detected signal arose from a rest-frame UV flash associated with a long GRB from GN-z11. Despite the very low probability of being a GRB, we find that the spectrum, brightness, and duration of the transient are consistent with such an interpretation. Our result may suggest that long GRBs can be produced as early as 420 million years after the Big Bang.
Based on far-infrared spectroscopy of a small sample of nearby infrared-bright and ultraluminous infrared galaxies (ULIRGs) with the ISO Long Wavelength Spectrometer, we find a dramatic progression in ionic/atomic fine-structure emission line and molecular/atomic absorption line characteristics in these galaxies extending from strong [O III]52,88 and [N III]57 micron line emission to detection of only faint [C II]158 micron line emission from gas in photodissociation regions in the ULIRGs. The molecular absorption spectra show varying excitation as well, extending from galaxies in which the molecular population mainly occupies the ground state to galaxies in which there is significant population in higher levels. In the case of the prototypical ULIRG, the merger galaxy Arp 220, the spectrum is dominated by absorption lines of OH, H2O, CH, and [O I]. Low [O III]88 micron line flux relative to the integrated far-infrared flux correlates with low excitation and does not appear to be due to far-infrared extinction or to density effects. A progression toward soft radiation fields or very dusty HII regions may explain these effects.
Deep surveys of the sky at millimeter wavelengths have revealed a population of ultra-luminous infrared galaxies (ULIRGs) at high redshifts. These appear similar to local objects of similar luminosities (such as Arp220) but are much more ``important at high redshift than at low reshift, in the sense that they represent a much larger fraction of the total luminous output of the distant Universe than they do locally. In fact the ULIRGs at high redshift are producing a significant fraction (>= 15%) of the total luminous output of the Universe averaged over all wavelengths and all epochs. The high z ULIRGs could plausibly be responsible for producing the metal-rich spheroidal components of galaxies, including the bulges that are the subject of this conference. In this case we would infer from the redshift distribution of the sources that much of this activity is probably happening relatively recently at z <= 2.
We present Herschel-PACS observations of rest-frame mid-infrared and far-infrared spectral line emissions from two lensed, ultra-luminous infrared galaxies at high redshift: MIPS J142824.0+352619 (MIPS J1428), a starburst-dominated system at z = 1.3, and IRAS F10214+4724 (F10214), a source at z = 2.3 hosting both star-formation and a luminous AGN. We have detected [OI]63 micron and [OIII]52 micron in MIPS J1428, and tentatively [OIII]52 micron in F10214. Together with the recent ZEUS-CSO [CII]158 micron detection in MIPS J1428 we can for the first time combine [OI], [CII] and far-IR (FIR) continuum measurements for photo-dissociation (PDR) modeling of an ultra-luminous (L_IR > 10^12 L_sun) star forming galaxy at the peak epoch of cosmic star formation. We find that MIPS J1428, contrary to average local ULIRGs, does not show a deficit in [OI] relative to FIR. The combination of far-UV flux G_0 and gas density n (derived from the PDR models), as well as the star formation efficiency (derived from CO and FIR) is similar to normal or starburst galaxies, despite the high infrared luminosity of this system. In contrast, F10214 has stringent upper limits on [OIV] and [SIII], and an [OIII]/FIR ratio at least an order of magnitude lower than local starbursts or AGN, similar to local ULIRGs.
Recent observations have shown that the characteristic luminosity of the rest-frame ultraviolet (UV) luminosity function does not significantly evolve at 4 < z < 7 and is approximately M*_UV ~ -21. We investigate this apparent non-evolution by examining a sample of 178 bright, M_UV < -21 galaxies at z=4 to 7, analyzing their stellar populations and host halo masses. Including deep Spitzer/IRAC imaging to constrain the rest-frame optical light, we find that M*_UV galaxies at z=4-7 have similar stellar masses of log(M/Msol)=9.6-9.9 and are thus relatively massive for these high redshifts. However, bright galaxies at z=4-7 are less massive and have younger inferred ages than similarly bright galaxies at z=2-3, even though the two populations have similar star formation rates and levels of dust attenuation. We match the abundances of these bright z=4-7 galaxies to halo mass functions from the Bolshoi Lambda-CDM simulation to estimate the halo masses. We find that the typical halo masses in ~M*_UV galaxies decrease from log(M_h/Msol)=11.9 at z=4 to log(M_h/Msol)=11.4 at z=7. Thus, although we are studying galaxies at a similar mass across multiple redshifts, these galaxies live in lower mass halos at higher redshift. The stellar baryon fraction in units of the cosmic mean Omega_b/Omega_m rises from 5.1% at z=4 to 11.7% at z=7; this evolution is significant at the ~3-sigma level. This rise does not agree with simple expectations of how galaxies grow, and implies that some effect, perhaps a diminishing efficiency of feedback, is allowing a higher fraction of available baryons to be converted into stars at high redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا