No Arabic abstract
We present 3-5 micron spectroscopy of the interacting system NGC 6240, showing the presence of two active galactic nuclei. The brightest (southern) nucleus shows up with a starburst-like emission, with a prominent 3.3 micron emission feature. However, the presence of an AGN is revealed by the detection of a broad Br alpha emission line, with a width of ~1,800 km/s. The spectrum of the faintest (northern) nucleus shows typical AGN features, such as a steep continuum and broad absorption features in the M-band. We discuss the physical properties of the dusty absorbers/emitters, and show that in both nuclei the AGN is dominant in the 3-5 micron band, but its contribution to the total luminosity is small (a few percent of the starburst emission).
We present the results of infrared L-band (3-4 micron) and M-band (4-5 micron) VLT-ISAAC spectroscopy of five bright Ultraluminous InfraRed Galaxies (ULIRGs) hosting an AGN. From our analysis we distinguish two types of sources: ULIRGs where the AGN is unobscured (with a flat continuum and no absorption features at 3.4 micron and 4.6 micron), and those with highly obscured AGNs (with a steep, reddened continuum and absorption features due to hydrocarbons and CO). Starburst activity is also present in all of the sources as inferred from the 3.3 micron PAH emission line. A strong correlation is found between continuum slope and CO optical depth, which suggests that deep carbon monoxide absorption is a common feature of highly obscured ULIRG AGN. Finally we show that the AGN dominates the 3-4 micron emission, even if its contribution to the bolometric luminosity is small.
We present the first observations of H$^{13}$CN$(1-0)$, H$^{13}$CO$^+(1-0)$ and SiO$(2-1)$ in NGC,6240, obtained with the IRAM PdBI. Combining a Markov Chain Monte Carlo (MCMC) code with Large Velocity Gradient (LVG) modelling, and with additional data from the literature, we simultaneously fit three gas phases and six molecular species to constrain the physical condition of the molecular gas, including mass$-$luminosity conversion factors. We find $sim10^{10}M_odot$ of dense molecular gas in cold, dense clouds ($T_{rm k}sim10$,K, $n_{{rm H}_2}sim10^6$,cm$^{-3}$) with a volume filling factor $<0.002$, embedded in a shock heated molecular medium ($T_{rm k}sim2000$,K, $n_{{rm H}_2}sim10^{3.6}$,cm$^{-3}$), both surrounded by an extended diffuse phase ($T_{rm k}sim200$,K, $n_{{rm H}_2}sim10^{2.5}$,cm$^{-3}$). We derive a global $alpha_{rm CO}=1.5^{7.1}_{1.1}$ with gas masses $log_{10}left(M / [M_odot]right)=10.1_{10.0}^{10.8}$, dominated by the dense gas. We also find $alpha_{rm HCN} = 32^{89}_{13}$, which traces the cold, dense gas. The [$^{12}$C]/[$^{13}$C] ratio is only slightly elevated ($98^{230}_{65}$), contrary to the very high [CO]/[$^{13}$CO] ratio (300-500) reported in the literature. However, we find very high [HCN]/[H$^{13}$CN] and [HCO$^+$]/[H$^{13}$CO$^+$] abundance ratios $(300^{500}_{200})$ which we attribute to isotope fractionation in the cold, dense clouds.
Dynamical black hole mass measurements in some gas-rich galaxy mergers indicate that they are overmassive relative to their host galaxy properties. Overmassive black holes in these systems present a conflict with the standard progression of galaxy merger - quasar evolution; an alternative explanation is that a nuclear concentration of molecular gas driven inward by the merger is affecting these dynamical black hole mass estimates. We test for the presence of such gas near the two black holes in NGC 6240 using long-baseline ALMA Band 6 observations (beam size 006 $times$ 003 or 30 pc$times$15 pc). We find (4.2-9.8) $times10^{7}$ M$_{odot}$ and (1.2-7.7) $times10^{8}$ M$_{odot}$ of molecular gas within the resolution limit of the original black hole mass measurements for the north and south black holes, respectively. In the south nucleus, this measurement implies that 6-89% of the original black hole mass measurement actually comes from molecular gas, resolving the tension in the original black hole scaling relations. For the north, only 5% to 11% is coming from molecular gas, suggesting the north black hole is actually overmassive. Our analysis provides the first measurement of significant molecular gas masses contaminating dynamical black hole mass measurements. These high central molecular gas densities further present a challenge to theoretical black hole accretion prescriptions, which often assume accretion proceeds rapidly through the central 10 pc.
We present the results of infrared L-band (3-4 micron) slit spectroscopy of 30 PG QSOs at z < 0.17, the representative sample of local high-luminosity, optically selected AGNs. The 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission feature is used to probe nuclear (< a few kpc) starburst activity and to investigate the connections between AGNs and nuclear starbursts in PG QSOs. The 3.3 micron PAH emission is detected in the individual spectra of 5/30 of the observed PG QSOs. We construct a composite spectrum of PAH-undetected PG QSOs and discern the presence of the 3.3 micron PAH emission therein. We estimate the nuclear-starburst and AGN luminosities from the observed 3.3 micron PAH emission and 3.35 micron continuum luminosities, respectively, and find that the nuclear-starburst-to-AGN luminosity ratios in PG QSOs are similar to those of previously studied AGN populations with lower luminosities, suggesting that AGN-nuclear starburst connections are valid over the wide luminosity range of AGNs in the local universe. The observed nuclear-starburst-to-AGN luminosity ratios in PG QSOs with available supermassive black hole masses are comparable to a theoretical prediction based on the assumption that the growth of a supermassive black hole is controlled by starburst-induced turbulence.
We present Herschel SPIRE FTS spectroscopy of the nearby luminous infrared galaxy NGC 6240. In total 20 lines are detected, including CO J=4-3 through J=13-12, 6 H2O rotational lines, and [CI] and [NII] fine-structure lines. The CO to continuum luminosity ratio is 10 times higher in NGC 6240 than Mrk 231. Although the CO ladders of NGC 6240 and Mrk 231 are very similar, UV and/or X-ray irradiation are unlikely to be responsible for the excitation of the gas in NGC 6240. We applied both C and J shock models to the H2 v=1-0 S(1) and v=2-1 S(1) lines and the CO rotational ladder. The CO ladder is best reproduced by a model with shock velocity v_s=10 km s^-1 and a pre-shock density n_H=5 * 10^4 cm^-3. We find that the solution best fitting the H2 lines is degenerate: The shock velocities and number densities range between v_s = 17 - 47 km s^-1 and n_H=10^7 - 5 * 10^4 cm^-3, respectively. The H2 lines thus need a much more powerful shock than the CO lines. We deduce that most of the gas is currently moderately stirred up by slow (10 km s^-1) shocks while only a small fraction (< 1 percent) of the ISM is exposed to the high velocity shocks. This implies that the gas is rapidly loosing its highly turbulent motions. We argue that a high CO line-to-continuum ratio is a key diagnostic for the presence of shocks.