Do you want to publish a course? Click here

How to Fuel an AGN: Mapping Circumnuclear Gas in NGC 6240 with ALMA

69   0   0.0 ( 0 )
 Added by Anne Medling
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dynamical black hole mass measurements in some gas-rich galaxy mergers indicate that they are overmassive relative to their host galaxy properties. Overmassive black holes in these systems present a conflict with the standard progression of galaxy merger - quasar evolution; an alternative explanation is that a nuclear concentration of molecular gas driven inward by the merger is affecting these dynamical black hole mass estimates. We test for the presence of such gas near the two black holes in NGC 6240 using long-baseline ALMA Band 6 observations (beam size 006 $times$ 003 or 30 pc$times$15 pc). We find (4.2-9.8) $times10^{7}$ M$_{odot}$ and (1.2-7.7) $times10^{8}$ M$_{odot}$ of molecular gas within the resolution limit of the original black hole mass measurements for the north and south black holes, respectively. In the south nucleus, this measurement implies that 6-89% of the original black hole mass measurement actually comes from molecular gas, resolving the tension in the original black hole scaling relations. For the north, only 5% to 11% is coming from molecular gas, suggesting the north black hole is actually overmassive. Our analysis provides the first measurement of significant molecular gas masses contaminating dynamical black hole mass measurements. These high central molecular gas densities further present a challenge to theoretical black hole accretion prescriptions, which often assume accretion proceeds rapidly through the central 10 pc.



rate research

Read More

We present the first observations of H$^{13}$CN$(1-0)$, H$^{13}$CO$^+(1-0)$ and SiO$(2-1)$ in NGC,6240, obtained with the IRAM PdBI. Combining a Markov Chain Monte Carlo (MCMC) code with Large Velocity Gradient (LVG) modelling, and with additional data from the literature, we simultaneously fit three gas phases and six molecular species to constrain the physical condition of the molecular gas, including mass$-$luminosity conversion factors. We find $sim10^{10}M_odot$ of dense molecular gas in cold, dense clouds ($T_{rm k}sim10$,K, $n_{{rm H}_2}sim10^6$,cm$^{-3}$) with a volume filling factor $<0.002$, embedded in a shock heated molecular medium ($T_{rm k}sim2000$,K, $n_{{rm H}_2}sim10^{3.6}$,cm$^{-3}$), both surrounded by an extended diffuse phase ($T_{rm k}sim200$,K, $n_{{rm H}_2}sim10^{2.5}$,cm$^{-3}$). We derive a global $alpha_{rm CO}=1.5^{7.1}_{1.1}$ with gas masses $log_{10}left(M / [M_odot]right)=10.1_{10.0}^{10.8}$, dominated by the dense gas. We also find $alpha_{rm HCN} = 32^{89}_{13}$, which traces the cold, dense gas. The [$^{12}$C]/[$^{13}$C] ratio is only slightly elevated ($98^{230}_{65}$), contrary to the very high [CO]/[$^{13}$CO] ratio (300-500) reported in the literature. However, we find very high [HCN]/[H$^{13}$CN] and [HCO$^+$]/[H$^{13}$CO$^+$] abundance ratios $(300^{500}_{200})$ which we attribute to isotope fractionation in the cold, dense clouds.
82 - T. Saito , D. Iono , J. Ueda 2017
We present 0.97 $times$ 0.53 (470 pc $times$ 250 pc) resolution CO ($J$ = 2-1) observations toward the nearby luminous merging galaxy NGC 6240 with the Atacama Large Millimeter/submillimeter Array. We confirmed a strong CO concentration within the central 700 pc, which peaks between the double nuclei, surrounded by extended CO features along the optical dust lanes ($sim$11 kpc). We found that the CO emission around the central a few kpc has extremely broad velocity wings with full width at zero intensity $sim$ 2000 km s$^{-1}$, suggesting a possible signature of molecular outflow(s). In order to extract and visualize the high-velocity components in NGC 6240, we performed a multiple Gaussian fit to the CO datacube. The distribution of the broad CO components show four extremely large linewidth regions ($sim$1000 km s$^{-1}$) located 1-2 kpc away from both nuclei. Spatial coincidence of the large linewidth regions with H$alpha$, near-IR H$_2$, and X-ray suggests that the broad CO (2-1) components are associated with nuclear outflows launched from the double nuclei.
We report ALMA Band 7 (350 GHz) imaging at 0.4 - 0.6arcsec resolution and Band 9 (696 GHz) at ~0.25arcsec resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate ISM masses for Arp 220 East, West and NGC 6240 of 1.9, 4.2 and 1.6x10^9 msun within radii of 69, 65 and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are n_H2 ~10^5 cm^-3 at R < 50 pc. We develop an analytic treatment for the molecular excitation (including photon trapping), yielding volume densities for both the HCN and CS emission with n_H2 ~2x10^5 cm^-3. The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e. it is not cloudy or like swiss cheese.
We explore the warm molecular and ionized gas in the centers of two megamaser disk galaxies using K-band spectroscopy. Our ultimate goal is to determine how gas is funneled onto the accretion disk, here traced by megamaser spots on sub-pc scales. We present NIR IFU data with a resolution of ~50 pc for two galaxies: NGC 4388 with VLT/SINFONI and NGC 1194 with Keck/OSIRIS+AO. The high spatial resolution and rich spectral diagnostics allow us to study both the stellar and gas kinematics as well as gas excitation on scales only an order of magnitude larger than the maser disk. We find a drop in the stellar velocity dispersion in the inner ~100 pc of NGC 4388, a common signature of a dynamically cold central component seen in many active nuclei. We also see evidence for non-circular gas motions in the molecular hydrogen on similar scales, with the gas kinematics on 100-pc scales aligned with the megamaser disk. In contrast, the high ionization lines and Br-gamma trace outflow along the 100 pc-scale jet. In NGC 1194, the continuum from the accreting black hole is very strong, making it difficult to measure robust two-dimensional kinematics, but the spatial distribution and line ratios of the molecular hydrogen and Br-gamma have consistent properties between the two galaxies.
We present an investigation of the relationship between giant molecular cloud (GMC) properties and the associated stellar clusters in the nearby flocculent galaxy NGC 7793. We combine the star cluster catalog from the HST LEGUS (Legacy ExtraGalactic UV Survey) program with the 15 parsec resolution ALMA CO(2-1) observations. We find a strong spatial correlation between young star clusters and GMCs such that all clusters still associated with a GMC are younger than 11 Myr and display a median age of 2 Myr. The age distribution increases gradually as the cluster-GMC distance increases, with star clusters that are spatially unassociated with molecular gas exhibiting a median age of 7 Myr. Thus, star clusters are able to emerge from their natal clouds long before the timescale required for clouds to disperse. To investigate if the hierarchy observed in the stellar components is inherited from the GMCs, we quantify the amount of clustering in the spatial distributions of the components and find that the star clusters have a fractal dimension slope of $-0.35 pm 0.03$, significantly more clustered than the molecular cloud hierarchy with slope of $-0.18 pm 0.04$ over the range 40-800 pc. We find, however, that the spatial clustering becomes comparable in strength for GMCs and star clusters with slopes of $-0.44pm0.03$ and $-0.45pm0.06$ respectively, when we compare massive ($>$10$^5$ M$_{odot}$) GMCs to massive and young star clusters. This shows that massive star clusters trace the same hierarchy as their parent GMCs, under the assumption that the star formation efficiency is a few percent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا