No Arabic abstract
We present MAMBO 1.2 mm observations of five BzK-pre-selected vigorous starburst galaxies at z~2. Two of these were detected at more than 99.5% confidence levels, with 1.2 mm fluxes around 1.5 mJy. These millimeter fluxes imply vigorous activity with star-formation rates (SFRs) approx. 500-1500 Msun/yr, confirmed also by detections at 24 microns with the MIPS camera on board of the Spitzer satellite. The two detected galaxies are the ones in the sample with the highest SFRs estimated from the rest-frame UV, and their far-IR- and UV-derived SFRs agree reasonably well. This is different from local ULIRGs and high-z submm/mm selected galaxies for which the UV is reported to underestimate SFRs by factors of 10-100, but similar to the average BzK-ULIRG galaxy at z~2. The two galaxies detected at 1.2 mm are brighter in K than the typical NIR-counterparts of MAMBO and SCUBA sources, implying also a significantly different K-band to submm/mm flux ratio. This suggests a scenario in which z~2 galaxies, after their rapid (sub)mm brightest phase opaque to optical/UV light, evolve into a longer lasting phase of K-band bright and massive objects. Targeting the most UV active BzKs could yield substantial detection rates at submm/mm wavelengths.
We present a search for CO(3-2) emission in SDF-26821, a BzK-selected star-forming galaxy (sBzK) at z = 2.044, using the 45-m telescope of the Nobeyama Radio Observatory and the Nobeyama Millimeter Array. We do not detect significant emission and derive 2 sigma limits: the CO luminosity of LCO < 3.1 x 10^10 K km s^{-1} pc^{-2}, the ratio of far-infrared luminosity to CO luminosity of L_FIR/LCO > 57 Lsun (K km s^{-1} pc^{-2})^{-1}, and the molecular gas mass of M_H2 < 2.5 x 10^10 Msun, assuming a velocity width of 200 km s^{-1} and a CO-to-H2 conversion factor of alpha_CO=0.8 Msun (K km s^{-1} pc^{-2})^{-1}. The ratio of L_FIR/LCO, a measure of star formation efficiency (SFE), is comparable to or higher than the two z ~ 1.5 sBzKs detected in CO(2-1) previously, suggesting that sBzKs can have a wide range of SFEs. Comparisons of far-infrared luminosity, gas mass, and stellar mass among the sBzKs suggest that SDF-26821 is at an earlier stage of forming stars with a similar SFE and/or more efficiently forming stars than the two z ~ 1.5 sBzKs. The higher SFEs and specific star formation rates of the sBzKs compared to local spirals are indicative of the difference in star formation modes between these systems, suggesting that sBzKs are not just scaled-
Using a sample of BzK-selected galaxies at z~2 identified from the CFHT/WIRCAM near-infrared survey of GOODS-North, we discuss the relation between star formation rate (SFR), specific star formation rate (SSFR), and stellar mass (M_{*}), and the clustering of galaxies as a function of these parameters. For star-forming galaxies (sBzKs), the UV-based SFR, corrected for extinction, scales with the stellar mass as SFR ~ M_{*}^{alpha} with alpha = 0.74+/-0.20 down to M_{*} ~ 10^{9} M_{solar}, indicating a weak dependence on the stellar mass of the SSFR. We also measure the angular correlation function and hence infer the correlation length for sBzK galaxies as a function of M_{*}, SFR, and SSFR, as well as K-band apparent magnitude. We show that passive galaxies (pBzKs) are more strongly clustered than sBzK galaxies at a given stellar mass, mirroring the color-density relation seen at lower redshifts. We also find that the correlation length of sBzK galaxies ranges from 4 to 20 h^{-1}Mpc, being a strong function of M_{K}, M_{*}, and SFR. On the other hand, the clustering dependence on SSFR changes abruptly at 2x10^{-9} yr^{-1}, which is the typical value for main sequence star-forming galaxies at z~2. We show that the correlation length reaches a minimum at this characteristic value, and is larger for galaxies with both smaller and larger SSFRs; a dichotomy that is only marginally implied from the predictions of the semi-analytical models. Our results suggest that there are two types of environmental effects at work at z~2. Stronger clustering for relatively quiescent galaxies implies that the environment has started to play a role in quenching star formation. At the same time, stronger clustering for galaxies with elevated SSFRs (starbursts) might be attributed to an increased efficiency for galaxy interactions and mergers in dense environments.
We take advantage of the sensitivity and resolution of Herschel at 100 and 160 micron to directly image the thermal dust emission and investigate the infrared luminosities, L(IR), and dust obscuration of typical star-forming (L*) galaxies at high redshift. Our sample consists of 146 UV-selected galaxies with spectroscopic redshifts 1.5<z<2.6 in the GOODS-North field. Supplemented with deep Very Large Array (VLA) and Spitzer imaging, we construct median stacks at the positions of these galaxies at 24, 100, and 160 micron, and 1.4 GHz. The comparison between these stacked fluxes and a variety of dust templates and calibrations implies that typical star-forming galaxies with UV luminosities L(UV)>1e10 Lsun at z~2 are luminous infrared galaxies (LIRGs) with a median L(IR)=(2.2+/-0.3)e11 Lsun. Typical galaxies at 1.5<z<2.6 have a median dust obscuration L(IR)/L(UV) = 7.1+/-1.1, which corresponds to a dust correction factor, required to recover the bolometric star formation rate (SFR) from the unobscured UV SFR, of 5.2+/-0.6. This result is similar to that inferred from previous investigations of the UV, H-alpha, 24 micron, radio, and X-ray properties of the same galaxies studied here. Stacking in bins of UV slope implies that L* galaxies with redder spectral slopes are also dustier, and that the correlation between UV slope and dustiness is similar to that found for local starburst galaxies. Hence, the rest-frame 30 and 50 micron fluxes validate on average the use of the local UV attenuation curve to recover the dust attenuation of typical star-forming galaxies at high redshift. In the simplest interpretation, the agreement between the local and high redshift UV attenuation curves suggests a similarity in the dust production and stellar and dust geometries of starburst galaxies over the last 10 billion years.
We study the properties of a sample of 211 heavily-obscured Active Galactic Nucleus (AGN) candidates in the Extended Chandra Deep Field-South selecting objects with f_24/f_R>1000 and R-K>4.5. Of these, 18 were detected in X-rays and found to be obscured AGN with neutral hydrogen column densities of ~10^23 cm^-2. In the X-ray undetected sample, the following evidence suggests a large fraction of heavily-obscured (Compton Thick) AGN: (i) The stacked X-ray signal of the sample is strong, with an observed ratio of soft to hard X-ray counts consistent with a population of ~90% heavily obscured AGN combined with 10% star-forming galaxies. (ii) The X-ray to mid-IR ratios for these sources are significantly larger than that of star-forming galaxies and ~2 orders of magnitude smaller than for the general AGN population, suggesting column densities of N_H>5x10^24 cm^-2. (iii) The Spitzer near- and mid-IR colors of these sources are consistent with those of the X-ray-detected sample if the effects of dust self-absorption are considered. Spectral fitting to the rest-frame UV/optical light (dominated by the host galaxy) returns stellar masses of ~10^11 M_sun and <E(B-V)> =0.5, and reveals evidence for a significant young stellar population, indicating that these sources are experiencing considerable star-formation. This sample of heavily-obscured AGN candidates implies a space density at z~2 of ~10^-5 Mpc^-3, finding a strong evolution in the number of L_X>10^44 erg/s sources from z=1.5 to 2.5, possibly consistent with a short-lived heavily-obscured phase before an unobscured quasar is visible.
We report on--off pointed MAMBO observations at 1.2 mm of 61 Spitzer-selected star-forming galaxies from the SWIRE survey. The sources are selected on the basis of bright 24um fluxes (f_24um>0.4mJy) and of stellar dominated near-infrared spectral energy distributions in order to favor z~2 starburst galaxies. The average 1.2mm flux for the whole sample is 1.5+/-0.2 mJy. Our analysis focuses on 29 sources in the Lockman Hole field where the average 1.2mm flux (1.9+/-0.3 mJy) is higher than in other fields (1.1+/-0.2 mJy). The analysis of the sources multi-wavelength spectral energy distributions indicates that they are starburst galaxies with far-infrared luminosities ~10^12-10^13.3 Lsun, and stellar masses of ~0.2-6 x10^11 M_sun. Compared to sub-millimeter selected galaxies (SMGs), the SWIRE-MAMBO sources are among those with the largest 24um/millimeter flux ratios. The origin of such large ratios is investigated by comparing the average mid-infrared spectra and the stacked far-infrared spectral energy distributions of the SWIRE-MAMBO sources and of SMGs. The mid-infrared spectra exhibit strong PAH features, and a warm dust continuum. The warm dust continuum contributes to ~34% of the mid-infrared emission, and is likely associated with an AGN component. This constribution is consistent with what is found in SMGs. The large 24um/1.2mm flux ratios are thus not due to AGN emission, but rather to enhanced PAH emission compared to SMGs. The analysis of the stacked far-infrared fluxes yields warmer dust temperatures than typically observed in SMGs. Our selection favors warm ultra-luminous infrared sources at high-z, a class of objects that is rarely found in SMG samples. Our sample is the largest Spitzer-selected sample detected at millimeter wavelengths currently available.