Do you want to publish a course? Click here

Clustering properties of BzK-selected galaxies in GOODS-N: environmental quenching and triggering of star formation at z ~ 2

109   0   0.0 ( 0 )
 Added by Lihwai Lin
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a sample of BzK-selected galaxies at z~2 identified from the CFHT/WIRCAM near-infrared survey of GOODS-North, we discuss the relation between star formation rate (SFR), specific star formation rate (SSFR), and stellar mass (M_{*}), and the clustering of galaxies as a function of these parameters. For star-forming galaxies (sBzKs), the UV-based SFR, corrected for extinction, scales with the stellar mass as SFR ~ M_{*}^{alpha} with alpha = 0.74+/-0.20 down to M_{*} ~ 10^{9} M_{solar}, indicating a weak dependence on the stellar mass of the SSFR. We also measure the angular correlation function and hence infer the correlation length for sBzK galaxies as a function of M_{*}, SFR, and SSFR, as well as K-band apparent magnitude. We show that passive galaxies (pBzKs) are more strongly clustered than sBzK galaxies at a given stellar mass, mirroring the color-density relation seen at lower redshifts. We also find that the correlation length of sBzK galaxies ranges from 4 to 20 h^{-1}Mpc, being a strong function of M_{K}, M_{*}, and SFR. On the other hand, the clustering dependence on SSFR changes abruptly at 2x10^{-9} yr^{-1}, which is the typical value for main sequence star-forming galaxies at z~2. We show that the correlation length reaches a minimum at this characteristic value, and is larger for galaxies with both smaller and larger SSFRs; a dichotomy that is only marginally implied from the predictions of the semi-analytical models. Our results suggest that there are two types of environmental effects at work at z~2. Stronger clustering for relatively quiescent galaxies implies that the environment has started to play a role in quenching star formation. At the same time, stronger clustering for galaxies with elevated SSFRs (starbursts) might be attributed to an increased efficiency for galaxy interactions and mergers in dense environments.



rate research

Read More

ABRIDGED-This paper presents the first direct estimate of the 3D clustering properties of far-infrared sources up to z~3. This has been possible thanks to the Pacs Evolutionary Probe (PEP) survey of the GOODS South field performed with the PACS instrument onboard the Herschel Satellite. An analysis of the two-point correlation function over the whole redshift range spanned by the data reports for the correlation length, r_0~6.3 Mpc and r_0~6.7 Mpc, respectively at 100um and 160um, corresponding to dark matter halo masses M>~10^{12.4} M_sun. Objects at z~2 instead seem to be more strongly clustered, with r_0~19 Mpc and r_0~17 Mpc in the two considered PACS channels. This dramatic increase of the correlation length between z~1 and z~2 is connected with the presence of a wide, M>~10^{14} M_sun, filamentary structure which includes more than 50% of the sources detected at z~2. An investigation of the properties of such sources indicates the possibility for boosted star-forming activity in those which reside within the overdense environment with respect of more isolated galaxies found in the same redshift range. Lastly, we also present our results on the evolution of the relationship between luminous and dark matter in star-forming galaxies between z~1 and z~2. We find that the increase of (average) stellar mass in galaxies <M*> between z~1 and z~2 is about a factor 10 lower than that of the dark matter haloes hosting such objects (<M*>[z~1]/<M*>[z~2] ~ 0.4 vs M_{halo}[z~1]/M_{halo}[z~2] ~ 0.04). Our findings agree with the evolutionary picture of downsizing whereby massive galaxies at z~2 were more actively forming stars than their z~1 counterparts, while at the same time contained a lower fraction of their mass in the form of luminous matter.
We present MAMBO 1.2 mm observations of five BzK-pre-selected vigorous starburst galaxies at z~2. Two of these were detected at more than 99.5% confidence levels, with 1.2 mm fluxes around 1.5 mJy. These millimeter fluxes imply vigorous activity with star-formation rates (SFRs) approx. 500-1500 Msun/yr, confirmed also by detections at 24 microns with the MIPS camera on board of the Spitzer satellite. The two detected galaxies are the ones in the sample with the highest SFRs estimated from the rest-frame UV, and their far-IR- and UV-derived SFRs agree reasonably well. This is different from local ULIRGs and high-z submm/mm selected galaxies for which the UV is reported to underestimate SFRs by factors of 10-100, but similar to the average BzK-ULIRG galaxy at z~2. The two galaxies detected at 1.2 mm are brighter in K than the typical NIR-counterparts of MAMBO and SCUBA sources, implying also a significantly different K-band to submm/mm flux ratio. This suggests a scenario in which z~2 galaxies, after their rapid (sub)mm brightest phase opaque to optical/UV light, evolve into a longer lasting phase of K-band bright and massive objects. Targeting the most UV active BzKs could yield substantial detection rates at submm/mm wavelengths.
213 - N. Reddy , M. Dickinson , D. Elbaz 2011
We take advantage of the sensitivity and resolution of Herschel at 100 and 160 micron to directly image the thermal dust emission and investigate the infrared luminosities, L(IR), and dust obscuration of typical star-forming (L*) galaxies at high redshift. Our sample consists of 146 UV-selected galaxies with spectroscopic redshifts 1.5<z<2.6 in the GOODS-North field. Supplemented with deep Very Large Array (VLA) and Spitzer imaging, we construct median stacks at the positions of these galaxies at 24, 100, and 160 micron, and 1.4 GHz. The comparison between these stacked fluxes and a variety of dust templates and calibrations implies that typical star-forming galaxies with UV luminosities L(UV)>1e10 Lsun at z~2 are luminous infrared galaxies (LIRGs) with a median L(IR)=(2.2+/-0.3)e11 Lsun. Typical galaxies at 1.5<z<2.6 have a median dust obscuration L(IR)/L(UV) = 7.1+/-1.1, which corresponds to a dust correction factor, required to recover the bolometric star formation rate (SFR) from the unobscured UV SFR, of 5.2+/-0.6. This result is similar to that inferred from previous investigations of the UV, H-alpha, 24 micron, radio, and X-ray properties of the same galaxies studied here. Stacking in bins of UV slope implies that L* galaxies with redder spectral slopes are also dustier, and that the correlation between UV slope and dustiness is similar to that found for local starburst galaxies. Hence, the rest-frame 30 and 50 micron fluxes validate on average the use of the local UV attenuation curve to recover the dust attenuation of typical star-forming galaxies at high redshift. In the simplest interpretation, the agreement between the local and high redshift UV attenuation curves suggests a similarity in the dust production and stellar and dust geometries of starburst galaxies over the last 10 billion years.
We present a search for CO(3-2) emission in SDF-26821, a BzK-selected star-forming galaxy (sBzK) at z = 2.044, using the 45-m telescope of the Nobeyama Radio Observatory and the Nobeyama Millimeter Array. We do not detect significant emission and derive 2 sigma limits: the CO luminosity of LCO < 3.1 x 10^10 K km s^{-1} pc^{-2}, the ratio of far-infrared luminosity to CO luminosity of L_FIR/LCO > 57 Lsun (K km s^{-1} pc^{-2})^{-1}, and the molecular gas mass of M_H2 < 2.5 x 10^10 Msun, assuming a velocity width of 200 km s^{-1} and a CO-to-H2 conversion factor of alpha_CO=0.8 Msun (K km s^{-1} pc^{-2})^{-1}. The ratio of L_FIR/LCO, a measure of star formation efficiency (SFE), is comparable to or higher than the two z ~ 1.5 sBzKs detected in CO(2-1) previously, suggesting that sBzKs can have a wide range of SFEs. Comparisons of far-infrared luminosity, gas mass, and stellar mass among the sBzKs suggest that SDF-26821 is at an earlier stage of forming stars with a similar SFE and/or more efficiently forming stars than the two z ~ 1.5 sBzKs. The higher SFEs and specific star formation rates of the sBzKs compared to local spirals are indicative of the difference in star formation modes between these systems, suggesting that sBzKs are not just scaled-
We present ALMA Band 6 (nu=233GHz, lambda=1.3mm) continuum observations towards 68 normal star-forming galaxies within two Coma-like progenitor structures at z=2.10 and 2.47, from which ISM masses are derived, providing the largest census of molecular gas mass in overdense environments at these redshifts. Our sample comprises galaxies with a stellar mass range of 1x10^9M_sun - 4x10^11M_sun with a mean M_*~6x10^10M_sun. Combining these measurements with multiwavelength observations and SED modeling, we characterize the gas mass fraction and the star formation efficiency, and infer the impact of the environment on galaxies evolution. Most of our detected galaxies (~70%) have star formation efficiencies and gas fractions similar to those found for coeval field galaxies and in agreement with the field scaling relations. However, we do find that the proto-clusters contain an increased fraction of massive, gas-poor galaxies, with low gas fractions (f_gas<6-10%) and red rest-frame ultraviolet/optical colors typical of post-starburst and passive galaxies. The relatively high abundance of passive galaxies suggests an accelerated evolution of massive galaxies in proto-cluster environments. The large fraction of quenched galaxies in these overdense structures also implies that environmental quenching takes place during the early phases of cluster assembly, even before virialization. From our data, we derive a quenching efficiency of E_q~0.45 and an upper limit on the quenching timescale of T_q<1Gyr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا