Do you want to publish a course? Click here

Multi-Generational Star Formation in L1551

89   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The L1551 molecular cloud contains two small clusters of Class 0 and I protostars, as well as a halo of more evolved Class II and III YSOs, indicating a current and at least one past burst of star formation. We present here new, sensitive maps of 850 and 450 um dust emission covering most of the L1551 cloud, new CO J=2-1 data of the molecular cloud, and a new, deep, optical image of [SII] emission. No new Class 0/I YSOs were detected. Compact sub-millimetre emitters are concentrated in two sub-clusters: IRS5 and L1551NE, and the HL~Tauri group. Both stellar groups show significant extended emission and outflow/jet activity. A jet, terminating at HH 265 and with a very weak associated molecular outflow, may originate from LkHa 358, or from a binary companion to another member of the HL Tauri group. Several Herbig Haro objects associated with IRS5/NE were clearly detected in the sub-mm, as were faint ridges of emission tracing outflow cavity walls. We confirm a large-scale molecular outflow originating from NE parallel to that from IRS5, and suggest that the hollow shell morphology is more likely due to two interacting outflows. We confirm the presence of a prestellar core (L1551-MC) of mass 2-3 Mo north-west of IRS5. The next generation cluster may be forming in this core. The L1551 cloud appears cometary in morphology, and appears to be illuminated and eroded from the direction of Orion, perhaps explaining the multiple episodes of star formation in this cloud. The full paper (including figures) can be downloaded at http://www.jach.hawaii.edu/~gms/l1551/l1551-apj641.pdf, or viewed at http://www.jach.hawaii.edu/~gms/l1551/.



rate research

Read More

The results of a deep mid-IR ISOCAM survey of the L1551 dark molecular cloud are presented. The aim of this survey is a search for new YSO (Young Stellar Object) candidates, using two broad-band filters centred at 6.7 and 14.3 micron. Although two regions close to the centre of L1551 had to be avoided due to saturation problems, 96 sources were detected in total (76 sources at 6.7 micron and 44 sources at 14.3 micron). Using the 24 sources detected in both filters, 14 were found to have intrinsic mid-IR excess at 14.3 micron and were therefore classified as YSO candidates. Using additional observations in B, V, I, J, H and K obtained from the ground, most candidates detected at these wavelengths were confirmed to have mid-IR excess at 6.7 micron as well, and three additional YSO candidates were found. Prior to this survey only three YSOs were known in the observed region (avoiding L1551 IRS5/NE and HL/XZ Tau). This survey reveals 15 new YSO candidates, although several of these are uncertain due to their extended nature either in the mid-IR or in the optical/near-IR observations. Two of the sources with mid-IR excess are previously known YSOs, one is a brown dwarf MHO 5 and the other is the well known T Tauri star HH30, consisting of an outflow and an optically thick disk seen edge on.
53 - W. B. Langdon 2020
C++ code snippets from a multi-core parallel memory-efficient crossover for genetic programming are given. They may be adapted for separate generation evolutionary algorithms where large chromosomes or small RAM require no more than M + (2 times nthreads) simultaneously active individuals.
We present a 3d code for the dynamical evolution of a multi-phase interstellar medium (ISM) coupled to stars via star formation (SF) and feedback processes. The multi-phase ISM consists of clouds (sticky particles) and diffuse gas (SPH): exchange of matter, energy and momentum is achieved by drag (due to ram pressure) and condensation or evaporation processes. The cycle of matter is completed by SF and feedback by SNe and PNe. A SF scheme based on a variable SF efficiency as proposed by Elmegreen & Efremov (1997) is presented. For a Milky Way type galaxy we get a SF rate of ~1 M_sun/yr with an average SF efficiency of ~5%.
We present multi-wavelength global star formation rate (SFR) estimates for 326 galaxies from the Star Formation Reference Survey (SFRS) in order to determine the mutual scatter and range of validity of different indicators. The widely used empirical SFR recipes based on 1.4 GHz continuum, 8.0 $mu$m polycyclic aromatic hydrocarbons (PAH), and a combination of far-infrared (FIR) plus ultraviolet (UV) emission are mutually consistent with scatter of $raise{-0.8ex}stackrel{textstyle <}{sim }$0.3 dex. The scatter is even smaller, $raise{-0.8ex}stackrel{textstyle <}{sim }$0.24 dex, in the intermediate luminosity range 9.3<log(L(60 $mu$m/L$_odot$)<10.7. The data prefer a non-linear relation between 1.4 GHz luminosity and other SFR measures. PAH luminosity underestimates SFR for galaxies with strong UV emission. A bolometric extinction correction to far-ultraviolet luminosity yields SFR within 0.2 dex of the total SFR estimate, but extinction corrections based on UV spectral slope or nuclear Balmer decrement give SFRs that may differ from the total SFR by up to 2 dex. However, for the minority of galaxies with UV luminosity ${>}5times10^9$ L$_{odot}$ or with implied far-UV extinction <1 mag, the UV spectral slope gives extinction corrections with 0.22~dex uncertainty.
We present observations at 7 mm that fully resolve the two circumstellar disks, and a reanalyses of archival observations at 3.5 cm that resolve along their major axes the two ionized jets, of the class I binary protostellar system L1551 NE. We show that the two circumstellar disks are better fit by a shallow inner and steep outer power-law than a truncated power-law. The two disks have very different transition radii between their inner and outer regions of $sim$18.6 AU and $sim$8.9 AU respectively. Assuming that they are intrinsically circular and geometrically thin, we find that the two circumstellar disks are parallel with each other and orthogonal in projection to their respective ionized jets. Furthermore, the two disks are closely aligned if not parallel with their circumbinary disk. Over an interval of $sim$10 yr, source B (possessing the circumsecondary disk) has moved northwards with respect to and likely away from source A, indicating an orbital motion in the same direction as the rotational motion of their circumbinary disk. All the aforementioned elements therefore share the same axis for their angular momentum, indicating that L1551 NE is a product of rotationally-driven fragmentation of its parental core. Assuming a circular orbit, the relative disk sizes are compatible with theoretical predictions for tidal truncation by a binary system having a mass ratio of $sim$0.2, in agreement with the reported relative separations of the two protostars from the center of their circumbinary disk. The transition radii of both disks, however, are a factor of $gtrsim$1.5 smaller than their predicted tidally-truncated radii.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا