Do you want to publish a course? Click here

Star Formation in a Multi-Phase ISM

82   0   0.0 ( 0 )
 Added by Stefan Harfst
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a 3d code for the dynamical evolution of a multi-phase interstellar medium (ISM) coupled to stars via star formation (SF) and feedback processes. The multi-phase ISM consists of clouds (sticky particles) and diffuse gas (SPH): exchange of matter, energy and momentum is achieved by drag (due to ram pressure) and condensation or evaporation processes. The cycle of matter is completed by SF and feedback by SNe and PNe. A SF scheme based on a variable SF efficiency as proposed by Elmegreen & Efremov (1997) is presented. For a Milky Way type galaxy we get a SF rate of ~1 M_sun/yr with an average SF efficiency of ~5%.



rate research

Read More

We present a new particle based code with a multi-phase description of the ISM implemented in order to follow the chemo-dynamical evolution of galaxies. The multi-phase ISM consists of clouds (sticky particles) and diffuse gas (SPH): Exchange of matter, energy and momentum is achieved by drag (due to ram pressure) and condensation or evaporation. Based on time scales we show that in Milky-Way-like galaxies the drag force is for molecular clouds only important, if their relative velocities exceed 100 km/s. For the mass exchange we find that clouds evaporate only if the temperature of the ambient gas is higher than one million Kelvin. At lower temperatures condensation takes place at time scales of the order of 1-10 Gyr.
92 - S. Harfst , C. Theis , G. Hensler 2004
We present a modified TREESPH code to model galaxies in 3d. The model includes a multi-phase description of the interstellar medium which combines two numerical techniques. A diffuse warm/hot gas phase is modelled by SPH while a sticky particle scheme is used to represent a cloudy medium. Interaction processes, such as star formation and feedback, cooling and mixing by condensation and evaporation, are taken into account. Here we apply our model to the evolution of a Milky Way type galaxy. After an initial stage, a quasi-equilibrium state is reached. It is characterised by a star formation rate of ~1 M_sun/year. Condensation and evaporation rates are in balance at 0.1-1 M_sun/year.
164 - Gerhard Hensler 2014
Supernovae are the most energetic stellar events and influence the interstellar medium by their gasdynamics and energetics. By this, both also affect the star formation positively and negatively. In this paper, we review the complexity of investigations aiming at understanding the interchange between supernova explosions with the star-forming molecular clouds. Commencing from analytical studies the paper advances to numerical models of supernova feedback from superbubble scales to galaxy structure. We also discuss parametrizations of star-formation and supernova-energy transfer efficiencies. Since evolutionary models from the interstellar medium to galaxies are numerous and are applying multiple recipes of these parameters, only a representative selection of studies can be discussed here.
We present a new particle code for modelling the evolution of galaxies. The code is based on a multi-phase description for the interstellar medium (ISM). We included star formation (SF), stellar feedback by massive stars and planetary nebulae, phase transitions and interactions between gas clouds and ambient diffuse gas, namely condensation, evaporation, drag and energy dissipation. The latter is realised by radiative cooling and inelastic cloud-cloud collisions. We present new schemes for SF and stellar feedback. They include a consistent calculation of the star formation efficiency (SFE) based on ISM properties as well as a detailed redistribution of the feedback energy into the different ISM phases. As a first test example we show a model of the evolution of a present day Milky-Way-type galaxy. Though the model exhibits a quasi-stationary behaviour in global properties like mass fractions or surface densities, the evolution of the ISM is locally strongly variable depending on the local SF and stellar feedback. We start only with two distinct phases, but a three-phase ISM is formed soon consisting of cold molecular clouds, a warm gas disk and a hot gaseous halo. Hot gas is also found in bubbles in the disk accompanied by type II supernovae explosions. The star formation rate (SFR) is ~1.6 M_sun/year on average decreasing slowly with time due to gas consumption. In order to maintain a constant SFR gas replenishment, e.g. by infall, of the order 1 M_sun/year is required. Our model is in fair agreement with Kennicutts (1998) SF law including the cut-off at ~10 M_sun/pc^2. Models with a constant SFE, i.e. no feedback on the SF, fail to reproduce Kennicutts law.
We present a study of a star formation prescription in which star formation efficiency depends on local gas density and turbulent velocity dispersion, as suggested by direct simulations of SF in turbulent giant molecular clouds (GMCs). We test the model using a simulation of an isolated Milky Way-sized galaxy with a self-consistent treatment of turbulence on unresolved scales. We show that this prescription predicts a wide variation of local star formation efficiency per free-fall time, $epsilon_{rm ff} sim 0.1 - 10%$, and gas depletion time, $t_{rm dep} sim 0.1 - 10$ Gyr. In addition, it predicts an effective density threshold for star formation due to suppression of $epsilon_{rm ff}$ in warm diffuse gas stabilized by thermal pressure. We show that the model predicts star formation rates in agreement with observations from the scales of individual star-forming regions to the kiloparsec scales. This agreement is non-trivial, as the model was not tuned in any way and the predicted star formation rates on all scales are determined by the distribution of the GMC-scale densities and turbulent velocities $sigma$ in the cold gas within the galaxy, which is shaped by galactic dynamics. The broad agreement of the star formation prescription calibrated in the GMC-scale simulations with observations, both gives credence to such simulations and promises to put star formation modeling in galaxy formation simulations on a much firmer theoretical footing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا