Do you want to publish a course? Click here

Hypervelocity intracluster stars ejected by supermassive black hole binaries

58   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hypervelocity stars have been recently discovered in the outskirts of galaxies, such as the unbound star in the Milky Way halo, or the three anomalously fast intracluster planetary nebulae (ICPNe) in the Virgo Cluster. These may have been ejected by close 3-body interactions with a binary supermassive black hole (SMBBH), where a star which passes within the semimajor axis of the SMBBH can receive enough energy to eject it from the system. Stars ejected by SMBBHs may form a significant sub-population with very different kinematics and mean metallicity than the bulk of the intracluster stars. The number, kinematics, and orientation of the ejected stars may constrain the mass ratio, semimajor axis, and even the orbital plane of the SMBBH. We investigate the evolution of the ejected debris from a SMBBH within a clumpy and time-dependent cluster potential using a high resolution, self-consistent cosmological N-body simulation of a galaxy cluster. We show that the predicted number and kinematic signature of the fast Virgo ICPNe is consistent with 3-body scattering by a SMBBH with a mass ratio $10:1$ at the center of M87.



rate research

Read More

In this paper we consider a scenario where the currently observed hypervelocity stars in our Galaxy have been ejected from the Galactic center as a result of dynamical interactions with an intermediate-mass black hole (IMBH) orbiting the central supermassive black hole (SMBH). By performing 3-body scattering experiments, we calculate the distribution of the ejected stars velocities given various parameters of the IMBH-SMBH binary: IMBH mass, semimajor axis and eccentricity. We also calculate the rates of change of the BH binary orbital elements due to those stellar ejections. One of our new findings is that the ejection rate depends (although mildly) on the rotation of the stellar nucleus (its total angular momentum). We also compare the ejection velocity distribution with that produced by the Hills mechanism (stellar binary disruption) and find that the latter produces faster stars on average. Also, the IMBH mechanism produces an ejection velocity distribution which is flattened towards the BH binary plane while the Hills mechanism produces a spherically symmetric one. The results of this paper will allow us in the future to model the ejection of stars by an evolving BH binary and compare both models with textit{Gaia} observations, for a wide variety of environments (galactic nuclei, globular clusters, the Large Magellanic Clouds, etc.).
170 - F. K. Liu 2009
Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time $propto t^{-5/3}$, would stop at a time $T_{rm tr} simeq eta T_{rm b}$. Here, $eta sim0.25$ and $T_{rm b}$ is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time $T_{rm r} simeq xi T_b$, where $xi sim 1$. Both $eta$ and $xi$ sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.
This paper focuses on the dynamical implications of close supermassive black hole binaries both as an example of resonant phase mixing and as a potential explanation of
158 - Xian Chen , 2007
Supermassive black hole binaries (SMBHBs) are expected by the hierarchical galaxy formation model in $Lambda$CDM cosmology. There is some evidence in the literature for SMBHBs in AGNs, but there are few observational constraints on the evolution of SMBHBs in inactive galaxies and gas-poor mergers. On the theoretical front, it is unclear how long is needed for a SMBHB in a typical galaxy to coalesce. In this paper we investigate the tidal interaction between stars and binary BHs and calculate the tidal disruption rates of stellar objects by the BH components of binary. We derive the interaction cross sections between SMBHBs and stars from intensive numerical scattering experiments with particle number $sim10^7$ and calculate the tidal disruption rates by both single and binary BHs for a sample of realistic galaxy models, taking into account the general relativistic effect and the loss cone refilling because of two-body interaction. We estimate the frequency of tidal flares for different types of galaxies using the BH mass function in the literature. We find that because of the three-body slingshot effect, the tidal disruption rate in SMBHB system is more than one order of magnitude smaller than that in single SMBH system. The difference is more significant in less massive galaxies and does not depend on detailed stellar dynamical processes. Our calculations suggest that comparisons of the calculated tidal disruption rates for both single and binary BHs and the surveys of X-ray or UV flares at galactic centers could tell us whether most SMBHs in nearby galaxies are single and whether the SMBHBs formed in gas-poor galaxy mergers coalesce rapidly.
Gravitational lensing of gravitational waves (GWs) is a powerful probe of the matter distribution in the universe. Here we study the lensing effect induced by dark matter (DM) halos on the GW signals from merging massive black holes, and we revisit the possibility of detection using the Laser Interferometer Space Antenna (LISA). In particular, we include the halos in the low-mass range of $10^5-10^9, M_odot$ since they are the most numerous according to the cold DM model. In addition, we employ the matched-filtering technique to search for weak diffraction signatures when the MBHBs have large impact parameters ($ysim10^2$). We find that about $(20-40)%$ of the MBHB in the mass range of $10^5-10^6M_odot$ and the redshift range of $4-10$ should show detectable wave-optics effects. The uncertainty comes mainly from the mass function of DM halos. Not detecting any signal during the LISA mission would imply that DM halos are significantly more massive than $10^8,M_odot$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا