No Arabic abstract
The sky region containing the soft gamma-ray repeater SGR 1627-41 has been observed three times with XMM-Newton in February and September 2004. SGR 1627-41 has been detected with an absorbed flux of ~9x10^{-14} erg cm^{-2} s^{-1} (2-10 keV). For a distance of 11 kpc, this corresponds to a luminosity of ~3x10^{33} erg s^{-1}, the smallest ever observed for a Soft Gamma Repeater and possibly related to the long period of inactivity of this source. The observed flux is smaller than that seen with Chandra in 2001-2003, suggesting that the source was still fading and had not yet reached a steady quiescent level. The spectrum is equally well fit by a steep power law (photon index ~3.2) or by a blackbody with temperature kT~0.8 keV. We also report on the INTEGRAL transient IGR J16358-4726 that lies at ~10 from SGR 1627-41. It was detected only in September 2004 with a luminosity of ~4x10^{33} erg s^{-1} (for d=7 kpc), while in February 2004 it was at least a factor 10 fainter.
We report millimeter observations of the line of sight to the recently discovered Soft Gamma Repeater, SGR 1627-41, which has been tentatively associated with the supernova remnant SNR G337.0-0.1 Among the eight molecular clouds along the line of sight to SGR 1627-41, we show that SNR G337.0-0.1 is probably interacting with one of the most massive giant molecular clouds (GMC) in the Galaxy, at a distance of 11 kpc from the sun. Based on the high extinction to the persistent X-ray counterpart of SGR 1627-41, we present evidence for an association of this new SGR with the SNR G337.0-0.1; they both appear to be located on the near side of the GMC. This is the second SGR located near an extraordinarily massive GMC. We suggest that SGR 1627-41 is a neutron star with a high transverse velocity (~ 1,000 kms) escaping the young (~ 5,000 years) supernova remnant G337.0-0.1
SGR 1627-41 was discovered in 1998 after a single active episode which lasted ~6 weeks. We report here our monitoring results of the decay trend of the persistent X-ray luminosity of the source during the last 5 years. We find an initial temporal power law decay with index 0.47, reaching a plateau which is followed by a sharp (factor of ten) flux decline ~800 days after the source activation. The source spectrum is best described during the entire period by a single power law with high absorption (N_H=9.0(7)x10^(22) cm^(-2)); the spectral index, however, varies dramatically between 2.2-3.8 spanning the entire range for all known SGR sources. We discuss the cooling behavior of the neutron star assuming a deep crustal heating initiated by the burst activity of the source during 1998.
Using Chandra data taken on 2008 June, we detected pulsations at 2.59439(4) s in the soft gamma-ray repeater SGR 1627-41. This is the second measurement of the source spin period and allows us to derive for the first time a long-term spin-down rate of (1.9 +/- 0.4)E-11 s/s. From this value we infer for SGR 1627-41 a characteristic age of 2.2 kyr, a spin-down luminosity of 4E+34 erg/s (one of the highest among sources of the same class), and a surface dipole magnetic field strength of 2E+14 G. These properties confirm the magnetar nature of SGR 1627-41; however, they should be considered with caution since they were derived on the basis of a period derivative measurement made using two epochs only and magnetar spin-down rates are generally highly variable. The pulse profile, double-peaked and with a pulsed fraction of (13 +/- 2)% in the 2-10 keV range, closely resembles that observed by XMM-Newton in 2008 September. Having for the first time a timing model for this SGR, we also searched for a pulsed signal in archival radio data collected with the Parkes radio telescope nine months after the previous X-ray outburst. No evidence for radio pulsations was found, down to a luminosity level 10-20 times fainter (for a 10% duty cycle and a distance of 11 kpc) than the peak luminosity shown by the known radio magnetars.
The low energy (<10 keV) X-ray emission of the Soft Gamma-ray Repeater SGR1806-20 has been studied by means of four XMM-Newton observations carried out in the last two years, the latter performed in response to a strong sequence of hard X-ray bursts observed on 2004 October 5. The source was caught in different states of activity: over the 2003-2004 period the 2-10 keV flux doubled with respect to the historical level observed previously. The long term raise in luminosity was accompanied by a gradual hardening of the spectrum, with the power law photon index decreasing from 2.2 to 1.5, and by a growth of the bursting activity. The pulse period measurements obtained in the four observations are consistent with an average spin-down rate of 5.5x10e-10 s/s, higher than the values observed in the previous years. The long-term behavior of SGR1806-20 exhibits the correlation between spectral hardness and spin-down rate previously found only by comparing the properties of different sources (both SGRs and Anomalous X-ray Pulsars). The best quality spectrum (obtained on 6 September 2004) cannot be fitted by a single power law, but it requires an additional blackbody component (kT=0.79 keV, R_BB = 1.9 (d/15 kpc)^2 km), similar to the spectra observed in other SGRs and in Anomalous X-ray Pulsars. No spectral lines were found in the persistent emission, with equivalent width upper limits in the range 30-110 eV. Marginal evidence for an absorption feature at 4.2 keV is present in the cumulative spectrum of 69 bursts detected in September-October 2004.
We present the first Suzaku observation of the new Soft Gamma Repeater SGR 0501+4516, performed on 2008 August 26, four days after the onset of bursting activity of this new member of the magnetar family. The soft X-ray persistent emission was detected with the X-ray Imaging Spectrometer (XIS) at a 0.5-10 keV flux of 3.8E-11 erg/s/cm2, with a spectrum well fitted by an absorbed blackbody plus power-law model. The source pulsation was confirmed at a period of 5.762072+/-0.000002 s, and 32 X-ray bursts were detected by the XIS, four of which were also detected at higher energies by the Hard X-ray Detector (HXD). The strongest burst, which occurred at 03:16:16.9 (UTC), was so bright that it caused instrumental saturation, but its precursor phase, lasting for about 200 ms, was detected successfully over the 0.5-200 keV range, with a fluence of ~2.1E-7 erg/cm2 and a peak intensity of about 89 Crab. The entire burst fluence is estimated to be ~50 times higher. The precursor spectrum was very hard, and well modeled by a combination of two blackbodies. We discuss the bursting activity and X/gamma-ray properties of this newly discovered Soft Gamma Repeater in comparison with other members of the class.