Do you want to publish a course? Click here

Spin-down rate and inferred dipole magnetic field of the soft gamma-ray repeater SGR 1627-41

102   0   0.0 ( 0 )
 Added by Paolo Esposito Dr
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using Chandra data taken on 2008 June, we detected pulsations at 2.59439(4) s in the soft gamma-ray repeater SGR 1627-41. This is the second measurement of the source spin period and allows us to derive for the first time a long-term spin-down rate of (1.9 +/- 0.4)E-11 s/s. From this value we infer for SGR 1627-41 a characteristic age of 2.2 kyr, a spin-down luminosity of 4E+34 erg/s (one of the highest among sources of the same class), and a surface dipole magnetic field strength of 2E+14 G. These properties confirm the magnetar nature of SGR 1627-41; however, they should be considered with caution since they were derived on the basis of a period derivative measurement made using two epochs only and magnetar spin-down rates are generally highly variable. The pulse profile, double-peaked and with a pulsed fraction of (13 +/- 2)% in the 2-10 keV range, closely resembles that observed by XMM-Newton in 2008 September. Having for the first time a timing model for this SGR, we also searched for a pulsed signal in archival radio data collected with the Parkes radio telescope nine months after the previous X-ray outburst. No evidence for radio pulsations was found, down to a luminosity level 10-20 times fainter (for a 10% duty cycle and a distance of 11 kpc) than the peak luminosity shown by the known radio magnetars.

rate research

Read More

82 - S. Corbel 1999
We report millimeter observations of the line of sight to the recently discovered Soft Gamma Repeater, SGR 1627-41, which has been tentatively associated with the supernova remnant SNR G337.0-0.1 Among the eight molecular clouds along the line of sight to SGR 1627-41, we show that SNR G337.0-0.1 is probably interacting with one of the most massive giant molecular clouds (GMC) in the Galaxy, at a distance of 11 kpc from the sun. Based on the high extinction to the persistent X-ray counterpart of SGR 1627-41, we present evidence for an association of this new SGR with the SNR G337.0-0.1; they both appear to be located on the near side of the GMC. This is the second SGR located near an extraordinarily massive GMC. We suggest that SGR 1627-41 is a neutron star with a high transverse velocity (~ 1,000 kms) escaping the young (~ 5,000 years) supernova remnant G337.0-0.1
SGR 1627-41 was discovered in 1998 after a single active episode which lasted ~6 weeks. We report here our monitoring results of the decay trend of the persistent X-ray luminosity of the source during the last 5 years. We find an initial temporal power law decay with index 0.47, reaching a plateau which is followed by a sharp (factor of ten) flux decline ~800 days after the source activation. The source spectrum is best described during the entire period by a single power law with high absorption (N_H=9.0(7)x10^(22) cm^(-2)); the spectral index, however, varies dramatically between 2.2-3.8 spanning the entire range for all known SGR sources. We discuss the cooling behavior of the neutron star assuming a deep crustal heating initiated by the burst activity of the source during 1998.
The sky region containing the soft gamma-ray repeater SGR 1627-41 has been observed three times with XMM-Newton in February and September 2004. SGR 1627-41 has been detected with an absorbed flux of ~9x10^{-14} erg cm^{-2} s^{-1} (2-10 keV). For a distance of 11 kpc, this corresponds to a luminosity of ~3x10^{33} erg s^{-1}, the smallest ever observed for a Soft Gamma Repeater and possibly related to the long period of inactivity of this source. The observed flux is smaller than that seen with Chandra in 2001-2003, suggesting that the source was still fading and had not yet reached a steady quiescent level. The spectrum is equally well fit by a steep power law (photon index ~3.2) or by a blackbody with temperature kT~0.8 keV. We also report on the INTEGRAL transient IGR J16358-4726 that lies at ~10 from SGR 1627-41. It was detected only in September 2004 with a luminosity of ~4x10^{33} erg s^{-1} (for d=7 kpc), while in February 2004 it was at least a factor 10 fainter.
106 - N. Rea 2010
Soft gamma repeaters and anomalous x-ray pulsars form a rapidly increasing group of x-ray sources exhibiting sporadic emission of short bursts. They are believed to be magnetars, i.e. neutron stars powered by extreme magnetic fields, B~10^{14}-10^{15} Gauss. We report on a soft gamma repeater with low magnetic field, SGR 0418+5729, recently detected after it emitted bursts similar to those of magnetars. X-ray observations show that its dipolar magnetic field cannot be greater than 7.5x10^{12} Gauss, well in the range of ordinary radio pulsars, implying that a high surface dipolar magnetic field is not necessarily required for magnetar-like activity. The magnetar population may thus include objects with a wider range of B-field strengths, ages and evolutionary stages than observed so far.
In 2008 August, the new soft gamma-ray repeater SGR 0501+4516 was discovered by Swift. The source was soon confirmed by several groups in space- and ground-based multi-wavelength observations. In this letter we report the analysis of five short bursts from the recently discovered SGR, detected with Konus-Wind gamma-ray burst spectrometer. Properties of the time histories of the observed events, as well as results of multi-channel spectral analysis, both in the 20--300 keV energy range, show, that the source exhibits itself as a typical SGR. The bursts durations are <0.75 s and their spectra above 20 keV can be fitted by optically-thin thermal bremsstrahlung (OTTB) model with kT of 20--40 keV. The spectral evolution is observed, which resembles the SGR 1627-41 bursts, where a strong hardness-intensity correlation was noticed in the earlier Konus-Wind observations. The peak energy fluxes of all five events are comparable to highest those for known SGRs, so a less distant source is implied, consistent with the determined Galactic anti-center direction. Supposing the young supernova remnant HB9 (at the distance of 1.5 kpc) as a natal environment of the source, the peak luminosities of the bursts are estimated to be (2--5)x10^{40} erg s-1. The values of the total energy release, given the same assumptions, amount to (0.6--6)x10^{39} erg. These estimations of both parameters are typical for short SGR bursts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا