Do you want to publish a course? Click here

VIMOS-IFU survey of z~0.2 massive galaxy clusters. I. Observations of the strong lensing cluster Abell 2667

64   0   0.0 ( 0 )
 Added by Giovanni Covone
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

(abridged) We present extensive multi-color imaging and low resolution VIMOS Integral Field Unit spectroscopic observations of the X-ray luminous cluster Abell 2667 (z=0.233). An extremely bright giant gravitational arc (z=1.0334) is easily identified as part of a triple image system and other fainter multiple images are also revealed by the HST-WFPC2 images. The VIMOS-IFU observations cover a field of view of 54 x 54 and enable us to determine the redshift of all galaxies down to V=22.5. Furthermore, redshifts could be identified for some sources down to V=23.2. In particular we identify 21 cluster members in the cluster inner region, from which we derive a velocity dispersion of sigma=960 km/s, corresponding to a total mass of 7.1 x 10^{13} solar masses within a 110 kpc radius. Using the multiple images constraints and priors on the mass distribution of cluster galaxy halos we construct a detailed lensing mass model leading to a total mass of 2.9 x 10^{13} solar masses within the Einstein radius (16 arcsec). The lensing mass and dynamical mass are in good agreement although the dynamical one is much less accurate. Comparing these measurements with published X-ray analysis, is however less conclusive. Although the X-ray temperature matches the dynamical and lensing estimates, the published NFW mass model derived from the X-ray measurement with its small concentration of c ~3 can not account for the large Einstein radius observed in this cluster. A larger concentration of ~6 would however match the strong lensing measurements. These results are likely reflecting the complex structure of the cluster mass distribution, underlying the importance of panchromatic studies from small to large scale in order to better understand cluster physics.



rate research

Read More

115 - Giovanni Covone 2006
We present the on-going observational program of a VIMOS Integral Field Unit survey of the central regions of massive, gravitational lensing galaxy clusters at redshift z~0.2. We have observed six clusters using the low-resolution blue grism (R about 200), and the spectroscopic survey is complemented by a wealth of photometric data, including Hubble Space Telescope optical data and near infrared VLT data. The principal scientific aims of this project are: the study of the high-z lensed galaxies, the transformation and evolution of galaxies in cluster cores and the use of multiple images to constrain cosmography. We briefly report here on the first results from this project on the clusters Abell 2667 and Abell 68.
253 - Johan Richard 2009
We present a statistical analysis of a sample of 20 strong lensing clusters drawn from the Local Cluster Substructure Survey (LoCuSS), based on high resolution Hubble Space Telescope imaging of the cluster cores and follow-up spectroscopic observations using the Keck-I telescope. We use detailed parameterized models of the mass distribution in the cluster cores, to measure the total cluster mass and fraction of that mass associated with substructures within R<250kpc.These measurements are compared with the distribution of baryons in the cores, as traced by the old stellar populations and the X-ray emitting intracluster medium. Our main results include: (i) the distribution of Einstein radii is log-normal, with a peak and 1sigma width of <log(RE(z=2))>=1.16+/-0.28; (ii) we detect an X-ray/lensing mass discrepancy of <M_SL/M_X>=1.3 at 3 sigma significance -- clusters with larger substructure fractions displaying greater mass discrepancies, and thus greater departures from hydrostatic equilibrium; (iii) cluster substructure fraction is also correlated with the slope of the gas density profile on small scales, implying a connection between cluster-cluster mergers and gas cooling. Overall our results are consistent with the view that cluster-cluster mergers play a prominent role in shaping the properties of cluster cores, in particular causing departures from hydrostatic equilibrium, and possibly disturbing cool cores. Our results do not support recent claims that large Einstein radius clusters present a challenge to the CDM paradigm.
We present an analysis of stellar populations in passive galaxies in seven massive X-ray clusters at z=0.19-0.89. Based on absorption line strengths measured from our high signal-to-noise spectra, the data support primarily passive evolution of the galaxies. We use the scaling relations between velocity dispersions and the absorption line strengths to determine representative mean line strengths for the clusters. From the age determinations based on the line strengths (and stellar population models), we find a formation redshift of z_form=1.96(-0.19,+0.24). Based on line strength measurements from high signal-to-noise composite spectra of our data, we establish the relations between velocity dispersion, ages, metallicities [M/H] and abundance ratios [alpha/Fe] as a function of redshift. The [M/H]-velocity dispersion and [alpha/Fe]-velocity dispersion relations are steep and tight. The age-velocity dispersion relation is flat, with zero point changes reflecting passive evolution. The scatter in all three parameters are within 0.08-0.15 dex at fixed velocity dispersions, indicating a large degree of synchronization in the evolution of the galaxies. We find indication of cluster-to-cluster differences in metallicities and abundance ratios. However, variations in stellar populations with the cluster environment can only account for a very small fraction of the intrinsic scatter in the scaling relations. Thus, within these very massive clusters the main driver of the properties of the stellar populations in passive galaxies appears to be the galaxy velocity dispersion.
Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong and weak lensing studies. Nonetheless there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r$_{petro} leq 20.5$ and within 50$^prime$ of the BCG (Brightest Cluster Galaxy: R.A.$_{2000} = 42.014125^circ$, Decl$_{2000} = -03.529228^circ$). We apply the caustic technique to identify 275 cluster members within 7$h^{-1}$ Mpc of the hierarchical cluster center. The BCG lies within $-11 pm 110$ km s$^{-1}$ and 21 $pm 56 h^{-1}$ kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak lensing contours of Okabe et al. (2010) especially when the impact of foreground and background structure is included. The values of R$_{200}$ = $1.22pm 0.01 h^{-1}$ Mpc and M$_{200}$ = $(5.07 pm 0.09)times 10^{14} h^{-1}$ M$_odot$ obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of $sim 5 h^{-1}$ Mpc.
158 - G. Covone , C. Adami , F. Durret 2006
We have searched for diffuse intracluster light in the galaxy cluster Abell 2667 (z=0.233) from HST images in three filters. We have applied to these images an iterative multi-scale wavelet analysis and reconstruction technique, which allows to subtract stars and galaxies from the original images. We detect a zone of diffuse emission south west of the cluster center (DS1), and a second faint object (ComDif), within DS1. Another diffuse source (DS2) may be detected, at lower confidence level, north east of the center. These sources of diffuse light contribute to 10-15% of the total visible light in the cluster. Whether they are independent entities or are part of the very elliptical external envelope of the central galaxy remains unclear. VLT VIMOS integral field spectroscopy reveals a faint continuum at the positions of DS1 and ComDif but do not allow to compute a redshift. A hierarchical substructure detection method reveals the presence of several galaxy pairs and groups defining a similar direction as the one drawn by the DS1-central galaxy-DS2 axis. The analysis of archive XMM-Newton and Chandra observations shows X-ray emission elongated in the same direction. The X-ray temperature map shows the presence of a cool core, a broad cool zone stretching from north to south and hotter regions towards the north east, south west and north west. This possibly suggests shock fronts along these directions produced by infalling material. These various data are consistent with a picture in which diffuse sources are concentrations of tidal debris and harassed matter expelled from infalling galaxies by tidal stripping and undergoing an accretion process onto the central cluster galaxy; as such, they are expected to be found along the main infall directions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا