Do you want to publish a course? Click here

A Redshift Survey of the Strong Lensing Cluster Abell 383

122   0   0.0 ( 0 )
 Added by Margaret Geller
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong and weak lensing studies. Nonetheless there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r$_{petro} leq 20.5$ and within 50$^prime$ of the BCG (Brightest Cluster Galaxy: R.A.$_{2000} = 42.014125^circ$, Decl$_{2000} = -03.529228^circ$). We apply the caustic technique to identify 275 cluster members within 7$h^{-1}$ Mpc of the hierarchical cluster center. The BCG lies within $-11 pm 110$ km s$^{-1}$ and 21 $pm 56 h^{-1}$ kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak lensing contours of Okabe et al. (2010) especially when the impact of foreground and background structure is included. The values of R$_{200}$ = $1.22pm 0.01 h^{-1}$ Mpc and M$_{200}$ = $(5.07 pm 0.09)times 10^{14} h^{-1}$ M$_odot$ obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of $sim 5 h^{-1}$ Mpc.



rate research

Read More

247 - A. Zitrin , T. Broadhurst , D. Coe 2011
We examine the inner mass distribution of the relaxed galaxy cluster Abell 383 in deep 16-band HST/ACS+WFC3 imaging taken as part of the CLASH multi-cycle treasury program. Our program is designed to study the dark matter distribution in 25 massive clusters, and balances depth with a wide wavelength coverage to better identify lensed systems and generate precise photometric redshifts. This information together with the predictive strength of our strong-lensing analysis method identifies 13 new multiply-lensed images and candidates, so that a total of 27 multiple-images of 9 systems are used to tightly constrain the inner mass profile, $dlog Sigma/dlog rsimeq -0.6pm 0.1$ (r<160 kpc). We find consistency with the standard distance-redshift relation for the full range spanned by the lensed images, 1.01<z<6.03, with the higher redshift sources deflected through larger angles as expected. The inner mass profile derived here is consistent with the results of our independent weak-lensing analysis of wide-field Subaru images, with good agreement in the region of overlap. The overall mass profile is well fitted by an NFW profile with M_{vir}=(5.37^{+0.70}_{-0.63}pm 0.26) x 10^{14}M_{odot}/h and a relatively high concentration, c_{vir}=8.77^{+0.44}_{-0.42}pm 0.23, which lies above the standard c-M relation similar to other well-studied clusters. The critical radius of Abell 383 is modest by the standards of other lensing clusters, r_{E}simeq16pm2arcsec (for z_s=2.55), so the relatively large number of lensed images uncovered here with precise photometric redshifts validates our imaging strategy for the CLASH survey. In total we aim to provide similarly high-quality lensing data for 25 clusters, 20 of which are X-ray selected relaxed clusters, enabling a precise determination of the representative mass profile free from lensing bias. (ABRIDGED)
We present a strong lensing analysis of the galaxy cluster Abell 370 (z=0.375) based on the recent multicolor ACS images obtained as part of the Early Release Observation (ERO) that followed the Hubble Service Mission #4. Back in 1987, the giant gravitational arc (z=0.725) in Abell 370 was one of the first pieces of evidence that massive clusters are dense enough to act as strong gravitational lenses. The new observations reveal in detail its disklike morphology, and we show that it can be interpreted as a complex five-image configuration, with a total magnification factor of 32+/-4. Moreover, the high resolution multicolor information allowed us to identify 10 multiply imaged background galaxies. We derive a mean Einstein radius of RE=39+/-2 for a source redshift at z=2, corresponding to a mass of M(<RE) = 2.82+/-0.15 1e14 Msol and M(<250 kpc)=3.8+/-0.2 1e14 Msol, in good agreement with Subaru weak-lensing measurements. The typical mass model error is smaller than 5%, a factor 3 of improvement compared to the previous lensing analysis. Abell 370 mass distribution is confirmed to be bi-modal with very small offset between the dark matter, the X-ray gas and the stellar mass. Combining this information with the velocity distribution reveals that Abell 370 is likely the merging of two equally massive clusters along the line of sight, explaining the very high mass density necessary to efficiently produce strong lensing. These new observations stress the importance of multicolor imaging for the identification of multiple images which is key to determining an accurate mass model. The very large Einstein radius makes Abell 370 one of the best clusters to search for high redshift galaxies through strong magnification in the central region.
We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS-Survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large samples of optically selected clusters from the SDSS surveys, totalling 5,000-15,000 clusters. A clear trend of increasing mean redshift towards the cluster centers is found, averaged over each of the four cluster samples. In addition we find similar but noisier behaviour for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M_200 ~ 1.4-1.8 10^14 M_sun for the optically detected cluster samples, and M_200 ~ 5.0 10^14 M_sun for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru-PFS, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration.
We present a first strong-lensing model for the galaxy cluster RM J121218.5+273255.1 ($z=0.35$; hereafter RMJ1212; also known as Abell 1489). This cluster is amongst the top 0.1% richest clusters in the redMaPPer catalog; it is significantly detected in X-ray and through the Sunyaev-Zeldovich effect in ROSAT and emph{Planck} data, respectively; and its optical luminosity distribution implies a very large lens, following mass-to-light scaling relations. Based on these properties it was chosen for the Webb Medium Deep Fields (WMDF) JWST/GTO program. In preparation for this program, RMJ1212 was recently imaged with GMOS on Gemini North and in seven optical and near-infrared bands with the emph{Hubble Space Telescope}. We use these data to map the inner mass distribution of the cluster, uncovering various sets of multiple images. We also search for high-redshift candidates in the data, as well as for transient sources. We find over a dozen high-redshift ($zgtrsim6$) candidates based on both photometric redshift and the dropout technique. No prominent ($gtrsim5 sigma$) transients were found in the data between the two HST visits. Our lensing analysis reveals a relatively large lens with an effective Einstein radius of $theta_{E}simeq32pm3$ ($z_{s}=2$), in broad agreement with the scaling-relation expectations. RMJ1212 demonstrates that powerful lensing clusters can be selected in a robust and automated way following the light-traces-mass assumption.
We analyze the mass content of the massive strong-lensing cluster Abell 586 ($z = 0.17$). We use optical data (imaging and spectroscopy) obtained with the Gemini Multi-Object Spectrograph (GMOS) mounted on the 8-m Gemini-North telescope, together with publicly available X-ray data taken with the textit{Chandra} space telescope. Employing different techniques -- velocity distribution of galaxies, weak gravitational lensing, and X-ray spatially resolved spectroscopy -- we derive mass and velocity dispersion estimates from each of them. All estimates agree well with each other, within a 68% confidence level, indicating a velocity dispersion of 1000 -- 1250 kms. The projected mass distributions obtained through weak-lensing and X-ray emission are strikingly similar, having nearly circular geometry. We suggest that Abell 586 is probably a truly relaxed cluster, whose last major merger occurred more than $sim 4$ Gyr ago
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا