Do you want to publish a course? Click here

X-RED: A Satellite Mission Concept To Detect Early Universe Gamma Ray Bursts

53   0   0.0 ( 0 )
 Added by Mirko Krumpe
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gamma ray bursts (GRBs) are the most energetic eruptions known in the Universe. Instruments such as Compton-GRO/BATSE and the GRB monitor on BeppoSAX have detected more than 2700 GRBs and, although observational confirmation is still required, it is now generally accepted that many of these bursts are associated with the collapse of rapidly spinning massive stars to form black holes. Consequently, since first generation stars are expected to be very massive, GRBs are likely to have occurred in significant numbers at early epochs. X-red is a space mission concept designed to detect these extremely high redshifted GRBs, in order to probe the nature of the first generation of stars and hence the time of reionisation of the early Universe. We demonstrate that the gamma and x-ray luminosities of typical GRBs render them detectable up to extremely high redshifts (z~10-30), but that current missions such as HETE2 and SWIFT operate outside the observational range for detection of high redshift GRB afterglows. Therefore, to redress this, we present a complete mission design from the science case to the mission architecture and payload, the latter comprising three instruments, namely wide field x-ray cameras to detect high redshift gamma-rays, an x-ray focussing telescope to determine accurate coordinates and extract spectra, and an infrared spectrograph to observe the high redshift optical afterglow. The mission is expected to detect and identify for the first time GRBs with z > 10, thereby providing constraints on properties of the first generation of stars and the history of the early Universe.



rate research

Read More

The study of the early high-energy emission from both long and short Gamma-ray bursts has been revolutionized by the Swift mission. The rapid response of Swift shows that the non-thermal X-ray emission transitions smoothly from the prompt phase into a decaying phase whatever the details of the light curve. The decay is often categorized by a steep-to-shallow transition suggesting that the prompt emission and the afterglow are two distinct emission components. In those GRBs with an initially steeply-decaying X-ray light curve we are probably seeing off-axis emission due to termination of intense central engine activity. This phase is usually followed, within the first hour, by a shallow decay, giving the appearance of a late emission hump. The late emission hump can last for up to a day, and hence, although faint, is energetically very significant. The energy emitted during the late emission hump is very likely due to the forward shock being constantly refreshed by either late central engine activity or less relativistic material emitted during the prompt phase. In other GRBs the early X-ray emission decays gradually following the prompt emission with no evidence for early temporal breaks, and in these bursts the emission may be dominated by classical afterglow emission from the external shock as the relativistic jet is slowed by interaction with the surrounding circum-burst medium. At least half of the GRBs observed by Swift also show erratic X-ray flaring behaviour, usually within the first few hours. The properties of the X-ray flares suggest that they are due to central engine activity. Overall, the observed wide variety of early high-energy phenomena pose a major challenge to GRB models.
333 - J. Braga 2003
We describe the ``Monitor e Imageador de Raios-X (MIRAX), an X-ray astronomy satellite mission proposed by the high energy astrophysics group at the National Institute for Space Research (INPE) in Brazil to the Brazilian Space Agency. MIRAX is an international collaboration that includes, besides INPE, the University of California San Diego, the University of Tuebingen in Germany, the Massachusetts Institute of Technology and the Space Research Organization Netherlands. The payload of MIRAX will consist in two identical hard X-ray cameras (10 -200 keV) and one soft X-ray camera (2-28 keV), both with angular resolution of ~ 5-6 arcmin. The basic objective of MIRAX is to carry out continuous broadband imaging spectroscopy observations of a large source sample (~ 9 months/yr) in the central Galactic plane region. This will allow the detection, localization, possible identification, and spectral/temporal study of the entire history of transient phenomena to be carried out in one single mission. MIRAX will have sensitivities of ~ 5 mCrab/day in the 2-10 keV band (~2 times better than the All Sky Monitor on Rossi X-ray Timing Explorer) and 2.6 mCrab/day in the 10-100 keV band (~40 times better than the Earth Occultation technique of the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory). The MIRAX spacecraft will weigh about 200 kg and is expected to be launched in a low-altitude (~ 600 km) circular equatorial orbit around 2007/2008.
128 - Keith Jahoda 2019
The X-ray Polarization Probe (XPP) is a second generation X-ray polarimeter following up on the Imaging X-ray Polarimetry Explorer (IXPE). The XPP will offer true broadband polarimetery over the wide 0.2-60 keV bandpass in addition to imaging polarimetry from 2-8 keV. The extended energy bandpass and improvements in sensitivity will enable the simultaneous measurement of the polarization of several emission components. These measurements will give qualitatively new information about how compact objects work, and will probe fundamental physics, i.e. strong-field quantum electrodynamics and strong gravity.
477 - John Heise , Jean in t Zand 2001
We discuss three classes of x-ray transients to highlight three new types of transients found with the Wide Field Cameras onboard BeppoSAX. First there are the transients related to Low Mass X-ray Binaries in outburst, typically lasting weeks to months and reaching luminosities of the Eddington limit for a few solar masses. Recently another subclass of outbursts in such binaries has been discovered, which are an order of magnitude fainter and last shorter than typical hours to days. We discuss whether they constitute a separate subset of x-ray binaries. A second class of x-ray transients are the x-ray bursts. Thermonuclear explosions on a neutron star (type I x-ray bursts) usually last of order minutes or less. We discovered a second type (called super x-ray bursts) with a duration of several hours. They relate to thermonuclear detonations much deeper in the neutron star atmosphere, possibly burning on the nuclear ashes of normal x-ray bursts. The third class are the enigmatic Fast X-ray Transients occurring at all galactic latitudes. We found that the bright ones are of two types only: either nearby coronal sources (lasting hours) or the socalled x-ray flashes (lasting minutes). The new class, the X-ray flashes, may be a new type of cosmic explosion, intermediate between supernovae and gamma ray bursts, or they may be highly redshifted gamma ray bursts. It thus appears that the three classes of x-ray transients each come in two flavors: long and short.
73 - Nicholas E. White 2020
Long Gamma Ray Bursts (LGRBs) can be used to address key questions on the formation of the modern universe including: How does the star formation rate evolve at high redshift? When and how did the intergalactic medium become re-ionized? What processes governed its early chemical enrichment? A LGRB signals when a massive star collapses to form a black hole and in doing so provides an independent tracer of the star formation rate. The LGRB afterglow is a bright back-light to view the host galaxy and intergalactic medium in absorption. The Gamow Explorer will be optimized to search for high redshift LGRBs, with a z>6 detection rate at least ten times the Neil Gehrels Swift Observatory. Furthermore it will go beyond Swift by using the photo-z technique to autonomously identify >80% of z>6 redshift LGRBs to enable rapid follow up by large ground based telescopes and JWST for spectroscopy and host galaxy identification. The Gamow Explorer will be proposed to the 2021 NASA MIDEX opportunity for launch in 2028.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا