Do you want to publish a course? Click here

Early multi-wavelength emission from Gamma-ray Bursts: from Gamma-ray to X-ray

67   0   0.0 ( 0 )
 Added by Paul T. O'Brien
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The study of the early high-energy emission from both long and short Gamma-ray bursts has been revolutionized by the Swift mission. The rapid response of Swift shows that the non-thermal X-ray emission transitions smoothly from the prompt phase into a decaying phase whatever the details of the light curve. The decay is often categorized by a steep-to-shallow transition suggesting that the prompt emission and the afterglow are two distinct emission components. In those GRBs with an initially steeply-decaying X-ray light curve we are probably seeing off-axis emission due to termination of intense central engine activity. This phase is usually followed, within the first hour, by a shallow decay, giving the appearance of a late emission hump. The late emission hump can last for up to a day, and hence, although faint, is energetically very significant. The energy emitted during the late emission hump is very likely due to the forward shock being constantly refreshed by either late central engine activity or less relativistic material emitted during the prompt phase. In other GRBs the early X-ray emission decays gradually following the prompt emission with no evidence for early temporal breaks, and in these bursts the emission may be dominated by classical afterglow emission from the external shock as the relativistic jet is slowed by interaction with the surrounding circum-burst medium. At least half of the GRBs observed by Swift also show erratic X-ray flaring behaviour, usually within the first few hours. The properties of the X-ray flares suggest that they are due to central engine activity. Overall, the observed wide variety of early high-energy phenomena pose a major challenge to GRB models.



rate research

Read More

477 - John Heise , Jean in t Zand 2001
We discuss three classes of x-ray transients to highlight three new types of transients found with the Wide Field Cameras onboard BeppoSAX. First there are the transients related to Low Mass X-ray Binaries in outburst, typically lasting weeks to months and reaching luminosities of the Eddington limit for a few solar masses. Recently another subclass of outbursts in such binaries has been discovered, which are an order of magnitude fainter and last shorter than typical hours to days. We discuss whether they constitute a separate subset of x-ray binaries. A second class of x-ray transients are the x-ray bursts. Thermonuclear explosions on a neutron star (type I x-ray bursts) usually last of order minutes or less. We discovered a second type (called super x-ray bursts) with a duration of several hours. They relate to thermonuclear detonations much deeper in the neutron star atmosphere, possibly burning on the nuclear ashes of normal x-ray bursts. The third class are the enigmatic Fast X-ray Transients occurring at all galactic latitudes. We found that the bright ones are of two types only: either nearby coronal sources (lasting hours) or the socalled x-ray flashes (lasting minutes). The new class, the X-ray flashes, may be a new type of cosmic explosion, intermediate between supernovae and gamma ray bursts, or they may be highly redshifted gamma ray bursts. It thus appears that the three classes of x-ray transients each come in two flavors: long and short.
129 - R. Atkins , W. Benbow , D. Berley 2005
The Milagro gamma-ray observatory employs a water Cherenkov detector to observe extensive air showers produced by high energy particles interacting in the Earths atmosphere. Milagro has a wide field of view and high duty cycle, monitoring the northern sky almost continuously in the 100 GeV to 100 TeV energy range. Milagro is, thus, uniquely capable of searching for very high-energy emission from gamma-ray bursts (GRBs) during the prompt emission phase. Detection of >100 GeV counterparts would place powerful constraints on GRB mechanisms. Twenty-five satellite-triggered GRBs occurred within the field of view of Milagro between January 2000 and December 2001. We have searched for counterparts to these GRBs and found no significant emission from any of the burst positions. Due to the absorption of high-energy gamma rays by the extragalactic background light, detections are only expected to be possible for redshifts less than ~0.5. Three of the GRBs studied have measured redshifts. GRB 010921 has a redshift low enough (0.45) to allow an upper limit on the fluence to place an observational constraint on potential GRB models.
125 - Lara Nava 2018
The number of Gamma-Ray Bursts (GRBs) detected at high energies ($sim,0.1-100$ GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a better characterisation of the high-energy emission properties and in stronger constraints on theoretical models. In spite of the many achievements and progresses, several observational properties still represent a challenge for theoretical models, revealing how our understanding is far from being complete. This paper reviews the main spectral and temporal properties of $sim,0.1-100$ GeV emission from GRBs and summarises the most promising theoretical models proposed to interpret the observations. Since a boost for the understanding of GeV radiation might come from observations at even higher energies, the present status and future prospects for observations at very-high energies (above $sim$ 100 GeV) are also discussed. The improved sensitivity of upcoming facilities, coupled to theoretical predictions, supports the concrete possibility for future ground GRB detections in the high/very-high energy domain.
The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting sensitivities are m(V) > 13.0 at 14.7 seconds after the gamma-ray rise, and m(V) > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.
Swift-XRT observations of the X-ray emission from gamma ray bursts (GRBs) and during the GRB afterglow have led to many new results during the past two years. One of these exciting results is that approximately 1/3-1/2 of GRBs contain detectable X-ray flares. The mean fluence of the X-ray flares is ~10 times less than that of the initial prompt emission, but in some cases the flare is as energetic as the prompt emission itself. The flares display fast rises and decays, and they sometimes occur at very late times relative to the prompt emission (sometimes as late as 10^5 s after T_0) with very high peak fluxes relative to the underlying afterglow decay that has clearly begun prior to some flares. The temporal and spectral properties of the flares are found to favor models in which flares arise due to the same GRB internal engine processes that spawned the prompt GRB emission. Therefore, both long and short GRB internal engine models must be capable of producing high fluences in the X-ray band at very late times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا