No Arabic abstract
The positron emissivity of the Galactic bulge and disk, resulting from radioactivity of SNIa, is reassessed in the light of a recent evaluation of the SNIa rate. It is found that the disk may supply more positrons than required by recent SPI/INTEGRAL observations, but the bulge (where the characteristic positron annihilation line at 511 keV is in fact observed) only about 10%. It is argued that a large fraction of the disk positrons may be transported via the regular magnetic field of the Galaxy into the bulge, where they annihilate. This would increase both the bulge emissivity and the bulge/disk ratio, alleviating considerably the constraints imposed by INTEGRAL data analysis. We argue that the bulge/disk positron emissivity ratio can be considerably smaller than the values derived by the recent analysis of Knoedlseder et al. (2005), if the disk positrons diffuse sufficiently away from their sources, as required by our model; this possibility could be tested in the future, as data are accumulated in the SPI detectors. The success of the proposed scenario depends critically upon the, very poorly known at present, properties of the galactic magnetic field and of the propagation of low energy positrons in it.
About one year ago, it was speculated that decaying or annihilating Light Dark Matter (LDM) particles could explain the flux and extension of the 511 keV line emission in the galactic centre. Here we present a thorough comparison between theoretical expectations of the galactic positron distribution within the LDM scenario and observational data from INTEGRAL/SPI. Unlike previous analyses, there is now enough statistical evidence to put tight constraints on the shape of the dark matter halo of our galaxy, if the galactic positrons originate from dark matter. For annihilating candidates, the best fit to the observed 511 keV emission is provided by a radial density profile with inner logarithmic slope gamma=1.03+-0.04. In contrast, decaying dark matter requires a much steeper density profile, gamma>1.5, rather disfavoured by both observations and numerical simulations. Within the annihilating LDM scenario, a velocity-independent cross-section would be consistent with the observational data while a cross-section purely proportional to v^2 can be rejected at a high confidence level. Assuming the most simplistic model where the galactic positrons are produced as primaries, we show that the LDM candidate should be a scalar rather than a spin-1/2 particle and obtain a very stringent constraint on the value of the positron production cross-section to explain the 511 keV emission. One consequence is that the value of the fine structure constant should differ from that recommended in the CODATA. This is a very strong test for the LDM scenario and an additional motivation in favour of experiments measuring alpha directly. Our results finally indicate that an accurate measurement of the shape of the dark halo profile could have a tremendous impact on the determination of the origin of the 511 keV line and vice versa.
Diffuse 511 keV line emission, from the annihilation of cold positrons, has been observed in the direction of the Galactic Centre for more than 30 years. The latest high-resolution maps of this emission produced by the SPI instrument on INTEGRAL suggest at least one component of the emission is spatially coincident with the distribution of ~70 luminous, low-mass X-ray binaries detected in the soft gamma-ray band. The X-ray band, however, is generally a more sensitive probe of X-ray binary populations. Recent X-ray surveys of the Galactic Centre have discovered a much larger population (>4000) of faint, hard X-ray point sources. We investigate the possibility that the positrons observed in the direction of the Galactic Centre originate in pair-dominated jets generated by this population of fainter accretion-powered X-ray binaries. We also consider briefly whether such sources could account for unexplained diffuse emission associated with the Galactic Centre in the microwave (the WMAP `haze) and at other wavelengths. Finally, we point out several unresolved problems in associating Galactic Centre 511 keV emission with the brightest X-ray binaries.
The first gamma-ray line originating from outside the solar system that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO showed that the emission is strongly concentrated towards the Galactic bulge. In the 2000s, the SPI instrument aboard ESAs INTEGRAL gamma-ray observatory allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge/disk luminosity ratio is larger than observed in any other wavelength. This mapping prompted a number of novel explanations, including rather exotic ones (e.g. dark matter annihilation). However, conventional astrophysical sources, like type Ia supernovae, microquasars or X-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, contrary to the rather well understood propagation of high energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low energy (~MeV) positrons in the turbulent, magnetized interstellar medium, still remains a formidable challenge. We review the spectral and imaging properties of the observed 511 keV emission and we critically discuss candidate positron sources and models of positron propagation in the Galaxy.
The elemental-abundance signatures of the very first stars are imprinted on the atmospheres of CEMP-no stars, as various evidence suggests they are bona-fide second-generation stars. It has recently been recognized that the CEMP-no stars can be sub-divided into at least two groups, based on their distinct morphology in the $A$(C)-[Fe/H] space, indicating the likely existence of multiple pathways for their formation. In this work, we compare the halo CEMP-no group morphology with that of stars found in satellite dwarf galaxies of the Milky Way -- a very similar $A$(C)-[Fe/H] pattern is found, providing clear evidence that halo CEMP-no stars were indeed accreted from their host mini-halos, similar in nature to those that formed in presently observed ultra-faint dwarfs (UFDs) and dwarf spheroidal (dSph) galaxies. We also infer that the previously noted anomalous CEMP-no halo stars (with high $A$(C) and low [Ba/Fe] ratios) that otherwise would be associated with Group I may have the same origin as the Group III CEMP-no halo stars, by analogy with the location of several Group III CEMP-no stars in the UFDs and dSphs and their distinct separation from that of the CEMP-$s$ stars in the $A$(Ba)-$A$(C) space. Interestingly, CEMP-no stars associated with UFDs include both Group II and Group III stars, while the more massive dSphs appear to have only Group II stars. We conclude that understanding the origin of the CEMP-no halo stars requires knowledge of the masses of their parent mini-halos, which is related to the amount of carbon dilution prior to star formation, in addition to the nature of their nucleosynthetic origin.
We use N-body chemo-dynamic simulations to study the coupling between morphology, kinematics and metallicity of the bar/bulge region of our Galaxy. We make qualitative comparisons of our results with available observations and find very good agreement. We conclude that this region is complex, since it comprises several stellar components with different properties -- i.e. a boxy/peanut bulge, thin and thick disc components, and, to lesser extents, a disky pseudobulge, a stellar halo and a small classical bulge -- all cohabiting in dynamical equilibrium. Our models show strong links between kinematics and metallicity, or morphology and metallicity, as already suggested by a number of recent observations. We discuss and explain these links.