No Arabic abstract
Signatures of the re-occurrence of activity in radio-loud AGNs, indicated either by the so-called double-double or X-shaped structures, have been observed in a number of radio sources. All such objects known to date have linear sizes of the order of a megaparsec. A number of the sources that are appreciably more compact than this, but that exhibit hints of a past phase of activity, were found in the VLA FIRST survey. Their structures show symmetric relic lobes straddling relatively bright, unresolved cores. Observations of the cores of 15 such structures with MERLIN at 5 GHz have shown that four of them are doubles or core-jets on the subarcsecond scale. Misalignments of Delta PA ga 30 degr. between the axis of the inner structure and the line connecting the fitted maxima of the arcminute-scale relic lobes are clearly visible in three of the four sources. From these results, we can infer that a rapid repositioning of the central engine in each of these three radio sources is the most plausible interpretation of the observed morphology and that a merger is most likely the original cause of such a repositioning. In the case of TXS 1033+026, the optical image extracted from the SDSS archives clearly suggests that two objects separated by only 2.7 kpc (projected onto the sky plane) are indeed merging. The inner parts of TXS 0818+214 and TXS 1312+563 could be interpreted as double-lobed, and consequently, these sources could be of the double-double type; but further multifrequency observations are necessary to provide support for such an interpretation.
Aims. We selected two radio quasars (J1036+1326 and J1353+5725) based on their 1.4-GHz radio structure, which is dominated by a bright central core and a pair of weaker and nearly symmetric lobes at ~10 angular separation. They are optically identified in the Sloan Digital Sky Survey (SDSS) at spectroscopic redshifts z>3. We investigate the possibility that their core-dominated triple morphology can be a sign of restarted radio activity in these quasars, involving a significant repositioning of the radio jet axis. Methods. We present the results of high-resolution radio imaging observations of J1036+1326 and J1353+5725, performed with the European Very Long Baseline Interferometry (VLBI) Network (EVN) at 1.6 GHz. These data are supplemented by archive observations from the Very Large Array (VLA).We study the large- and small-scale radio structures and the brightness temperatures, then estimate relativistic beaming parameters. Results. We show that the central emission region of these two high-redshift, core-dominated triple sources is compact but resolved at ~10 milli-arcsecond resolution. We find that it is not necessary to invoke large misalignment between the VLBI jet and the large-scale radio structure to explain the observed properties of the sources.
As a rule, both lobes of Fanaroff-Riley (FR) type-II radio sources are terminated with hotspots, but the 3C328 radio galaxy is a specimen of an FR II-like object with a hotspot in only one lobe. A conceivable reason for such asymmetry is that the nucleus of 3C328 was temporarily inactive. There was no energy transfer from it to the lobes during the period of quiescence, and so they began to fade out. However, under the assumption that the axis connecting the two lobes makes an appreciable angle with the sky plane, and hence one is considerably farther from the observer than the other, the lobes are observed at two distinct stages of evolution due to the light-travel lag. While the far-side lobe is still perceived as being of the FR II type with a hotspot, decay of the near-side lobe is already apparent. No jets are visible in the VLA images, but the VLBA observations of the inverted-spectrum core component of 3C328 have revealed that it has a jet of a sub-arcsecond length pointing towards the lobe that shows evidence of decay. Since the jet always points to the near side, its observed orientation is in line with the scenario proposed here. The presence of the jet supports the inference that the nucleus of 3C328 is currently active; however, given the fact that the jet is short (approx. 200 pc in projection), the activity must have restarted very recently. The lower and upper limits of the quiescent period length have been calculated.
About 6% of Radio Galaxies (RG) can reach linear sizes larger than 0.7 Mpc, and are then classified as Giant Radio Galaxies (GRG). The conditions that make possible the formation of such big structures is still not clear - either core accretion properties or environmental factors. Recent studies have shown that GRG can be up to four times more abundant in hard X-ray selected (i.e. from INTEGRAL/IBIS and Swift/BAT at >20 keV) RG samples. Moreover, a high fraction of young radio sources found in their cores suggests a recently restarted activity, as suggested from the discrepancy between the measured jet and lobes power, with respect to the one expected from core X-ray luminosity. Here we present a radio morphological study of a sample of 15 hard X-ray selected GRG, discussing low-frequency images from our GMRT campaign complemented with others from the literature: among them, 7/15 show evidence of restarted radio activity either in the form of double-double/X-shaped morphology, or as a cocoon emission embedding more recent jets. This, together with the objects from this sample already found hosting a young radio source in their core, suggests that at least 13 over 15 of these hard X-ray selected GRG show features which are consistent with the possibility of restarted radio activity.
The study of Head Tail (HT) radio galaxies track the information of associated galaxy clusters. With the help of the VLA FIRST survey at 1.4 GHz, we detected 607 new HT radio sources, among them, 398 are Wide Angle Tail (WAT) and 216 are Narrow-Angle Tail (NAT) sources. NAT sources generally have `V shaped structure with an opening angle less than ninety degrees and for WAT sources opening angle between the jets is more than ninety degrees. We found that almost 80 per cent of our sources are associated with a known galaxy cluster. We mentioned various useful physical properties of these HT sources. Taking advantage of a large sample of newly discovered HT sources, various statistical studies have been done. The luminosity range of sources presented in the current paper is $10^{39}$ $leq$ $L_{1.4GHz}$ $leq$ $10^{43}$ erg sec$^{-1}$. We identified optical counterparts for 193 WAT and 104 NAT sources. The sources are found up to redshift 2.08.
We present the first catalogue of point-source UV-excess sources selected from the UVEX survey. UVEX images the Northern Galactic Plane in the U, g, r and HeI5875 bands in the Galactic latitude range -5deg<b<+5deg. Through an automated algorithm, which works on a field-to-field basis, we select blue UV-excess sources in 211 square degrees from the (U-g) vs. (g-r) colour-colour diagram and the g vs. (U-g) and g vs. (g-r) colour-magnitude diagrams. The UV-excess catalogue covers the magnituderange 14<g<22.5, contains 2170 sources and consists of a mix of white dwarfs, post-common-envelope objects, interacting binaries, quasars and AGN. Two other samples of outliers were found during the selection: i) a subdwarf sample, consisting of no less than 9872 candidate metal-poor stars or lightly reddened main-sequence stars, and ii) a purple sample consisting of 803 objects, most likely a mix of reddened late M-giants, T Tauri stars, planetary nebulae, symbiotic stars and carbon stars. Cross-matching the selected UV-excess catalogue with other catalogues aids with the first classification of the different populations and shows that more than 99% of our selected sources are unidentified sources.