No Arabic abstract
The study of Head Tail (HT) radio galaxies track the information of associated galaxy clusters. With the help of the VLA FIRST survey at 1.4 GHz, we detected 607 new HT radio sources, among them, 398 are Wide Angle Tail (WAT) and 216 are Narrow-Angle Tail (NAT) sources. NAT sources generally have `V shaped structure with an opening angle less than ninety degrees and for WAT sources opening angle between the jets is more than ninety degrees. We found that almost 80 per cent of our sources are associated with a known galaxy cluster. We mentioned various useful physical properties of these HT sources. Taking advantage of a large sample of newly discovered HT sources, various statistical studies have been done. The luminosity range of sources presented in the current paper is $10^{39}$ $leq$ $L_{1.4GHz}$ $leq$ $10^{43}$ erg sec$^{-1}$. We identified optical counterparts for 193 WAT and 104 NAT sources. The sources are found up to redshift 2.08.
One-side head-tail (OHT) galaxies are radio galaxies with a peculiar shape. They usually appear in galaxy clusters, but they have never been cataloged systematically. We design an automatic procedure to search for them in the Faint Images of the Radio Sky at Twenty-Centimeters source catalog and compile a sample with 115 HT candidates. After cross-checking with the Sloan Digital Sky Survey photometric data and catalogs of galaxy clusters, we find that 69 of them are possible OHT galaxies. Most of them are close to the center of galaxy clusters. The lengths of their tails do not correlate with the projection distance to the center of the nearest galaxy clusters, but show weak anticorrelation with the cluster richness, and are inversely proportional to the radial velocity differences between clusters and host galaxies. Our catalog provides a unique sample to study this special type of radio galaxies.
From ROSAT imaging data we have detections and upper limits for a sample of 26 tailed radio sources in clusters of galaxies mostly from the sample of ODea & Owen (1985). All sixteen of the detected sources are unresolved in the ROSAT PSPC images. The sources bright enough to perform X-ray spectral analysis have power-law indices similar to BL~Lacs and Seyfert galaxies. We find that there is a highly significant correlation between the core radio flux density and the X-ray flux but only a weak correlation between the total radio flux density and the X-ray flux. The trend is similar to that found in earlier studies of 3C radio galaxies with {sl Einstein} and more recently with ROSAT. The result adds an additional constraint on models for the unification of BL~Lac objects with FR~I radio sources. Also this result indicates that the observed enhanced X-ray emission near tailed sources is more likely to be due to nuclear emission rather than substructure in the extended cluster gas.
The peculiar morphology of Head-Tail (HT) radio galaxies indicates strong interactions between the radio jets and their intra-cluster medium. We systematically search for HT radio galaxies from LOFAR Two-metre Sky Survey first data release (LoTSS DR1) at 144 MHz frequency. We present here a catalogue of fifty new HT radio sources, among them, five are Narrow-Angle Tailed sources (NATs) and forty-five are Wide Angle Tailed sources (WATs). NATs are characterized by tails bent in a narrow V like shape with less than a ninety-degree opening angle. For WAT radio galaxies, the opening angle between jets is more than ninety degrees which exhibit wide C like morphologies. We found that thirty-one out of fifty HT sources are associated with known galaxy clusters. The various physical properties and statistical studies of these HT sources are also presented in this paper.
We present results from a study of seven large known head-tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of the multiple bends an d wiggles in several head-tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases a long the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ~100 Myr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.
We present the multiwavelength properties of 266 cataloged radio sources identified with 20 and 6 cm VLA deep observations of the CDFS at a flux density limit of 42 mu Jy at the field centre at 1.4 GHz. These new observations probe the faint end of both the star formation and radio galaxy/AGN population. X-ray data, including upper limits, turn out to be a key factor in establishing the nature of faint radio sources. We find that, while the well-known flattening of the radio number counts below 1 mJy is mostly due to star forming galaxies, these sources and AGN make up an approximately equal fraction of the sub--millijansky sky, contrary to some previous results. We have also uncovered a population of distant AGN systematically missing from many previous studies of sub-millijansky radio source identifications. The AGN include radio galaxies, mostly of the low-power, Fanaroff-Riley I type, and a significant radio-quiet component, which amounts to approximately one fifth of the total sample. We also find that radio detected, X-ray AGN are not more heavily obscured than the X-ray detected AGN. This argues against the use of radio surveys as an efficient way to search for the missing population of strongly absorbed AGN.