We report the discovery of a large-scale coherent filamentary structure of Lyman alpha emitters in a redshift space at z=3.1. We carried out spectroscopic observations to map the three dimensional structure of the belt-like feature of the Lyman alpha emitters discovered by our previous narrow-band imaging observations centered on the protocluster at z=3.1. The feature was found to consist of at least three physical filaments connecting with each other. The result is in qualitative agreement with the prediction of the biased galaxy-formation theories that galaxies preferentially formed in large-scale filamentary or sheet-like mass overdensities in the early Universe. We also found that the two known giant Lyman alpha emission-line nebulae showing high star-formation activities are located near the intersection of these filaments, which presumably evolves into a massive cluster of galaxies in the local Universe. This may suggest that massive galaxy formation occurs at the characteristic place in the surrounding large-scale structure at high redshift.
We present broad-band imaging with the Subaru Telescope of a 25x25 field surrounding the radio galaxy TN J1338-1942 at redshift z=4.1. The field contains excesses of Lyman-alpha emitters (LAEs) and Lyman break galaxies (LBGs) identified with a protocluster surrounding the radio galaxy. Our new wide-field images provide information about the boundary of the protocluster and its surroundings. There are 874 candidate LBGs within our field, having redshifts in the range z=3.5-4.5. An examination of the brightest of these (with i< 25.0) shows that the most prominent concentration coincides with the previously discovered protocluster. The diameter of this galaxy overdensity corresponds to ~2 Mpc at z=4, consistent with the previous estimation using LAEs. Several other concentrations of LBGs are observed in the field, some of which may well be physically connected with the z=4.1 protocluster. The observed structure in the smoothed LBG distribution can be explained as the projection of large-scale structure, within the redshift range z=3.5-4.5, comprising compact overdensities and prominent larger voids. If the 5-8 observed compact overdensities are associated with protoclusters, the observed protocluster volume density is ~5x10^-6 Mpc^-3, similar to the volume density of rich clusters in the local Universe.
PKS 1138-262 is a massive radio galaxy at z = 2.16 surrounded by overdensities of Lya emitters, Ha emitters, EROs and X-ray emitters. Numerous lines of evidence exist that it is located in a forming cluster. We report on Keck spectroscopy of candidate members of this protocluster, including nine of the 18 X-ray sources detected by Pentericci et al. (2002) in this field. Two of these X-ray sources (not counting PKS 1138-262 itself) were previously confirmed to be members of the protocluster; we have discovered that an additional two (both AGN) are members of a filamentary structure, at least 3.5 Mpc in projection, aligned with the radio jet axis, the 150 kpc-sized emission-line halo, and the extended X-ray emission around the radio galaxy. Three of the nine X-ray sources observed are lower redshift AGN, and three are M-dwarf stars.
We have made a statistically complete, unbiased survey of C IV systems toward a region of high QSO density near the South Galactic Pole using 25 lines of sight spanning $1.5<z<2.8$. Such a survey makes an excellent probe of large-scale structure at early epochs. We find evidence for structure on the $15-35h^{-1}$ proper Mpc scale ($H_0 equiv 100$ km $s^{-1}$ Mpc${-1}$) as determined by the two point C IV - C IV absorber correlation function, and reject the null hypothesis that C IV systems are distributed randomly on such scales at the $sim 3.5sigma$ level. The structure likely reflects the distance between two groups of absorbers subtending $sim~ 13 times 5 times 21h^{-3}$ and $sim 7 times 1 times 15h^{-3}$ Mpc$^3$ at $zsim 2.3$ and $z sim 2.5$ respectively. There is also a marginal trend for the association of high rest equivalent width C IV absorbers and QSOs at similar redshifts but along different lines of sight. The total number of C IV systems detected is consistent with that which would be expected based on a survey using many widely separated lines of sight. Using the same data, we also find 11 Mg II absorbers in a complete survey toward 24 lines of sight; there is no evidence for Mg II - Mg II or Mg II - QSO clustering, though the sample size is likely still small to detect such structure if it exists.
We present the results from a submm survey of a sample of 23 giant Lya emitting nebulae in the overdensity at z=3.09 in the SA22 field. These objects, which have become known as Lya Blobs (LABs) have a diverse range of morphology and surface brightness, but the nature of their power source is unclear - with cooling flows and/or AGN/starburst ionised winds being possibilities. Using the SCUBA submm camera we measure the 850um flux of a sample of LABs, detecting four LABs at >3.5sigma individually, and a modest statistical detection of the full sample at about 3mJy. These fluxes correspond to bolometric luminosities in the ultraluminous regime, with star-formation rates of about 1e3 Msun/yr. We show there is a trend between Lya luminosity and bolometric output, which suggests that a galactic scale superwind generated from starbursts of age 10-100Myr may be responsible for the Lya emission. We estimate the star-formation rate density in SA22 to be >3 Msun/yr/Mpc^3 - greater than the field at this epoch, and note that there are now 7 submm galaxies in the SA22 structure, making this region the richest association of these intensely active galaxies. Finally we suggest that Lya haloes may be a common feature of the submm population in general, and have an important role in the heating and enrichment of the intergalactic medium.
The properties of K-band selected galaxies (K_AB<24) in the z = 3.09 SSA22 protocluster field are studied. 430 galaxies at 2.6 < z_phot < 3.6 are selected as potential protocluster members in a 112 arcmin^2 area based on their photometric redshifts. We find that approx 20% of the massive galaxies with stellar masses >10^11 M_sun at z_phot sim 3.1 have colors consistent with those of quiescent galaxies with ages > 0.5 Gyr. This fraction increases to approx 50% after correcting for unrelated foreground/background objects. We also find that 30% of the massive galaxies are heavily reddened dusty star-forming galaxies. Few such quiescent galaxies at similar redshifts are seen in typical survey fields. An excess surface density of 24mu m sources at z_phot sim 3.1 is also observed, implying the presence of dusty star-formation activity in the protocluster. Cross-correlation with the X-ray data indicates that the fraction of K-band selected protocluster galaxies hosting active galactic nuclei (AGN) is also high compared with the field. The sky distribution of the quiescent galaxies, the 24mu m sources, and the X-ray AGNs show clustering around a density peak of z=3.1 Lyalpha emitters (LAEs). A significant fraction of the massive galaxies have already become quiescent, while the dusty star-formation is still active in the SSA22 protocluster. These findings indicate that we are witnessing the formation epoch of massive early-type galaxies at the center of predecessors to present-day rich galaxy clusters.