Do you want to publish a course? Click here

A ZZ Ceti white dwarf in SDSS J133941.11+484727.5

395   0   0.0 ( 0 )
 Added by Boris Gaensicke
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present time-resolved spectroscopy and photometry of the cataclysmic variable (CV) SDSSJ133941.11+484727.5 (SDSS1339) which has been discovered in the Sloan Digital Sky Survey Data Release 4. The orbital period determined from radial velocity studies is 82.524(24)min, close to the observed period minimum. The optical spectrum of SDSS1339 is dominated to 90% by emission from the white dwarf. The spectrum can be successfully reproduced by a three-component model (white dwarf, disc, secondary) with Twd=12500K for a fixed log g=8.0, d=170pc, and a spectral type of the secondary later than M8. The mass transfer rate corresponding to the optical luminosity of the accretion disc is very low,~1.7x10^-13Msun/yr. Optical photometry reveals a coherent variability at 641s with an amplitude of 0.025mag, which we interpret as non-radial pulsations of the white dwarf. In addition, a long-period photometric variation with a period of either 320min or 344min and an amplitude of 0.025mag is detected, which bears no apparent relation with the orbital period of the system. Similar long-period photometric signals have been found in the CVs SDSSJ123813.73-033933.0, SDSSJ204817.85-061044.8, GW Lib and FS Aur, but so far no working model for this behaviour is available.

rate research

Read More

The thermally pulsing phase on the asymptotic giant branch (TP-AGB) is the last nuclear burning phase experienced by most of low and intermediate mass stars. During this phase, the outer chemical stratification above the C/O core of the emerging white dwarf is built up. The chemical structure resulting from progenitor evolution strongly impacts the whole pulsation spectrum exhibited by ZZ Ceti stars, which are pulsating C/O core white dwarfs located on an narrow instability strip at T eff sim 12000 K. Several physical processes occurring during progenitor evolution strongly affect the chemical structure of these stars, being those found during the TP-AGB phase ones of the most relevant for the pulsational properties of ZZ Ceti stars. We present a study of the impact of the chemical structure built up during the TP-AGB evolution on the stellar parameters inferred from asteroseismological fits of ZZ Ceti stars. Our analysis is based on a set of carbon-oxygen core white dwarf models with masses from 0.534 to 0.6463M_{odot} derived from full evolutionary computations from the ZAMS to the ZZ Ceti domain. We compute evolutionary sequences that experience different number of thermal pulses. We find that the occurrence or not of thermal pulses during AGB evolution implies an average deviation in the astero- seimological effective temperature of ZZ Ceti stars of at most 8% and of the order of < 5% in the stellar mass. For the mass of the hydrogen envelope, however, we find deviations up to 2 orders of magnitude in the case of cool ZZ Ceti stars. For hot and intermediate temperature ZZ Ceti stars shows no differences in the hydrogen envelope mass in most cases. Our results show that, in general, the impact of the occurrence or not of thermal pulses in the progenitor stars is not negligible and must be taken into account in asteroseismological studies of ZZ Ceti stars.
103 - J.-N. Fu , G. Vauclair , J. Su 2019
An increasing number of white dwarf stars show atmospheric chemical composition polluted by heavy elements accreted from debris disk material. The existence of such debris disks strongly suggests the presence of one or more planet(s) whose gravitational interaction with rocky planetesimals is responsible for their disruption by tidal effect. The ZZ Ceti pulsator and polluted DAZ white dwarf GD 133 is a good candidate for searching for such a potential planet. We started in 2011 a photometric follow-up of its pulsations. As a result of this work in progress, we used the data gathered from 2011 to 2015 to make an asteroseismological analysis of GD 133, providing the star parameters from a best fit model with $M$/$M_{odot}$ = 0.630 $pm$ 0.002, $T_{rm eff}$ = 12400 K $pm$ 70 K, log($M_{rm He}/M$) = -2.00 $pm$ 0.02, log($M_{rm H}/M$) = -4.50 $pm$ 0.02 and determining a rotation period of $approx$ 7 days.
There is a fairly tight correlation between the pulsation periods and effective temperatures of ZZ Ceti stars (cooler stars have longer periods). This seems to fit the theoretical picture, where driving occurs in the partial ionization zone, which lies deeper and deeper within the star as it cools. It is reasonable to assume that the pulsation periods should be related to the thermal timescale in the region where driving occurs. As that region sinks further down below the surface, that thermal timescale increases. Assuming this connection, the pulsation periods could provide an additional way to determine effective temperatures, independent of spectroscopy. We explore this idea and find that in practice, things are not so simple.
We present a new catalog of spectroscopically-confirmed white dwarf stars from the Sloan Digital Sky Survey Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent a more than factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalog based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log(g) if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.
We determined masses for the 7167 DA and 507 DB white dwarf stars classified as single and non-magnetic in data release four of the Sloan Digital Sky Survey (SDSS). We obtained revised Teff and log g determinations for the most massive stars by fitting the SDSS optical spectra with a synthetic spectra grid derived from model atmospheres extending to log g=10.0. We also calculate radii from evolutionary models and create volume-corrected mass distributions for our DA and DB samples. The mean mass for the DA stars brighter than g=19 and hotter than Teff=12000K is M(DA)= 0.593+/-0.016M(Sun). For the 150 DBs brighter than g=19 and hotter than Teff=16000K, we find M(DB)=0.711+/-0.009 M(Sun). It appears the mean mass for DB white dwarf stars may be significantly larger than that for DAs. We also report the highest mass white dwarf stars ever found, up to 1.33 M(Sun).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا