Do you want to publish a course? Click here

Asteroseismology of ZZ Ceti stars with full evolutionary white dwarf models. II. The impact of AGB thermal pulses on the asteroseismic inferences of ZZ Ceti stars

83   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermally pulsing phase on the asymptotic giant branch (TP-AGB) is the last nuclear burning phase experienced by most of low and intermediate mass stars. During this phase, the outer chemical stratification above the C/O core of the emerging white dwarf is built up. The chemical structure resulting from progenitor evolution strongly impacts the whole pulsation spectrum exhibited by ZZ Ceti stars, which are pulsating C/O core white dwarfs located on an narrow instability strip at T eff sim 12000 K. Several physical processes occurring during progenitor evolution strongly affect the chemical structure of these stars, being those found during the TP-AGB phase ones of the most relevant for the pulsational properties of ZZ Ceti stars. We present a study of the impact of the chemical structure built up during the TP-AGB evolution on the stellar parameters inferred from asteroseismological fits of ZZ Ceti stars. Our analysis is based on a set of carbon-oxygen core white dwarf models with masses from 0.534 to 0.6463M_{odot} derived from full evolutionary computations from the ZAMS to the ZZ Ceti domain. We compute evolutionary sequences that experience different number of thermal pulses. We find that the occurrence or not of thermal pulses during AGB evolution implies an average deviation in the astero- seimological effective temperature of ZZ Ceti stars of at most 8% and of the order of < 5% in the stellar mass. For the mass of the hydrogen envelope, however, we find deviations up to 2 orders of magnitude in the case of cool ZZ Ceti stars. For hot and intermediate temperature ZZ Ceti stars shows no differences in the hydrogen envelope mass in most cases. Our results show that, in general, the impact of the occurrence or not of thermal pulses in the progenitor stars is not negligible and must be taken into account in asteroseismological studies of ZZ Ceti stars.



rate research

Read More

We present an asteroseismological analysis of four ZZ Ceti stars observed with emph{Kepler}: GD 1212, SDSS J113655.17+040952.6, KIC 11911480 and KIC 4552982, based on a grid of full evolutionary models of DA white dwarf stars. We employ a grid of carbon-oxygen core white dwarfs models, characterized by a detailed and consistent chemical inner profile for the core and the envelope. In addition to the observed periods, we take into account other information from the observational data, as amplitudes, rotational splittings and period spacing, as well as photometry and spectroscopy. For each star, we present an asteroseismological model that closely reproduce their observed properties. The asteroseismological stellar mass and effective temperature of the target stars are (0.632 +/- 0.027 Msun, 10737 +/- 73 K) for GD 1212, (0.745 +/- 0.007 Msun, 11110 +/- 69 K) for KIC 4552982, (0.5480 +/- 0.01 Msun, 12721 +/- 228 K) for KIC1191480 and (0.570 +/- 0.01 Msun, 12060 +/- 300 K) for SDSS J113655.17+040952.6. In general, the asteroseismological values are in good agreement with the spectroscopy. For KIC 11911480 and SDSS J113655.17+040952.6 we derive a similar seismological mass, but the hydrogen envelope is an order of magnitude thinner for SDSS J113655.17+040952.6, that is part of a binary system and went through a common envelope phase.
ZZ Ceti stars are pulsating white dwarfs with a carbon-oxygen core build up during the core helium burning and thermally pulsing Asymptotic Giant Branch phases. Through the interpretation of their pulsation periods by means of asteroseismology, details about their origin and evolution can be inferred. The whole pulsation spectrum exhibited by ZZ Ceti stars strongly depends on the inner chemical structure. At present, there are several processes affecting the chemical profiles that are still not accurately determined. We present a study of the impact of the current uncertainties of the white dwarf formation and evolution on the expected pulsation properties of ZZ Ceti stars. Our analysis is based on a set of carbon-oxygen core white dwarf models with masses $0.548$ and $0.837 M_{sun}$ derived from full evolutionary computations from the ZAMS to the ZZ Ceti domain. We have considered models in which we varied the number of thermal pulses, the amount of overshooting, and the $^{12}$C$(alpha,gamma)^{16}$O reaction rate within their uncertainties. We explore the impact of these major uncertainties in prior evolution on the chemical structure and the expected pulsation spectrum. We find that these uncertainties yield significant changes in the $g$-mode pulsation periods. We conclude that the uncertainties in the white dwarf progenitor evolution should be be taken into account in detailed asterseismological analysis of these pulsating stars.
We combine all the reliably-measured eigenperiods for hot, short-period ZZ Ceti stars onto one diagram and show that it has the features expected from evolutionary and pulsation theory. To make a more detailed comparison with theory we concentrate on a subset of 16 stars for which rotational splitting or other evidence gives clues to the spherical harmonic index (l) of the modes. The suspected l=1 periods in this subset of stars form a pattern of consecutive radial overtones that allow us to conduct ensemble seismology using published theoretical model grids. We find that the best-matching models have hydrogen layer masses most consistent with the canonically thick limit calculated from nuclear burning. We also find that the evolutionary models with masses and temperatures from spectroscopic fits cannot correctly reproduce the periods of the k=1 to 4 mode groups in these stars, and speculate that the mass of the helium layer in the models is too large.
215 - Zs. Bognar , Cs. Kalup , A. Sodor 2021
Context. We continued our ground-based observing project with the season-long observations of ZZ Ceti stars at Konkoly Observatory. Our present targets are the newly discovered PM J22299+3024, and the already known LP 119-10 variables. LP 119-10 was also observed by the TESS (Transiting Exoplanet Survey Satellite) space telescope in 120-second cadence mode. Methods. We performed standard Fourier analysis of the daily, weekly, and the whole data sets, together with test data of different combinations of weekly observations. We then performed asteroseismic fits utilising the observed and the calculated pulsation periods. For the calculations of model grids necessary for the fits, we applied the 2018 version of the White Dwarf Evolution Code. Results. We derived six possible pulsation modes for PM J22299+3024, and five plus two TESS pulsation frequencies for LP 119-10. Note that further pulsation frequencies may be present in the data sets, but we found their detection ambiguous, so we omitted them from the final frequency list. Our asteroseismic fits of PM J22299+3024 give 11 400 K and 0.46 Msun for the effective temperature and the stellar mass. The temperature is ~800 K higher, while the mass of the model star is exactly the same as it was earlier derived by spectroscopy. Our model fits of LP~119-10 put the effective temperature in the range of 11 800 - 11 900 K, which is again higher than the spectroscopic 11 290 K value, while our best model solutions give M* = 0.70 Msun mass for this target, near to the spectroscopic value of 0.65 Msun, likewise in the case of PM J22299+3024. The seismic distances of our best-fitting model stars agree with the Gaia astrometric distances of PM J22299+3024 and LP 119-10 within the errors, validating our model results.
277 - J.-N. Fu , N. Dolez , G. Vauclair 2012
The pulsating DA white dwarfs (ZZ Ceti stars) are $g$-mode non-radial pulsators. Asteroseismology provides strong constraints on their global parameters and internal structure. Since all the DA white dwarfs falling in the ZZ Ceti instability strip do pulsate, the internal structure derived from asteroseismology brings knowledge for the DA white dwarfs as a whole group. HS 0507+0434B is one of the ZZ Ceti stars which lies approximately in the middle of the instability strip for which we have undertaken a detailed asteroseismological study. We carried out multisite observation campaigns in 2007 and from December 2009 to January 2010. In total, 206 hours of photometric time-series have been collected. They have been analysed by means of Fourier analysis and simultaneous multi-frequency sine-wave fitting. In total, 39 frequency values are resolved including 6 triplets and a number of linear combinations. We identify the triplets as $ell$=1 $g$-modes split by rotation. We derived the period spacing, the rotational splitting and the rotation rate. From the comparison of the observed periods with the theoretical periods of a series of models we estimate the fundamental parameters of the star: its total mass M$_{*}$/M$_{odot}$ = 0.675, its luminosity L/L$_{odot}$=3.5$times 10^{-3}$, and its hydrogen mass fraction M$_{H}$/M$_{*}$= 10$^{-8.5}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا