Do you want to publish a course? Click here

Radio emission from Colliding-Wind Binaries: Observations and Models

104   0   0.0 ( 0 )
 Added by Sean M. Dougherty
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed radiative transfer models of the radio emission from colliding-wind binaries (CWB) based on a hydrodynamical treatment of the wind-collision region (WCR). The archetype of CWB systems is the 7.9-yr period binary WR140, which exhibits dramatic variations at radio wavelengths. High-resolution radio observations of WR140 permit a determination of several system parameters, particularly orbit inclination and distance, that are essential for any models of this system. A model fit to data at orbital phase 0.9 is shown, and some short comings of our model described.



rate research

Read More

280 - R. Blomme 2009
In colliding-wind binaries, shocks accelerate a fraction of the electrons up to relativistic speeds. These electrons then emit synchrotron radiation at radio wavelengths. Whether or not we detect this radiation depends on the size of the free-free absorption region in the stellar winds of both components. One expects long-period binaries to be detectable, but not the short-period ones. It was therefore surprising to find that Cyg OB2 No. 8A (P = 21.9 d) does show variability locked with orbital phase. To investigate this, we developed a model for the relativistic electron generation (including cooling and advection) and the radiative transfer of the synchrotron emission through the stellar wind. Using this model, we show that the synchrotron emitting region in Cyg OB2 No. 8A does extend far enough beyond the free-free absorption region to generate orbit-locked variability in the radio flux. This model can also be applied to other non-thermal emitters and will prove useful in interpreting observations from future surveys, such as COBRaS - the Cyg OB2 Radio Survey.
330 - Delia Volpi 2011
Many early-type stars are in binary systems. A number of them shows radio emissivity with periodic variability. This variability is associated with non-thermal synchrotron radiation emitted by relativistic electrons. The strong shocks necessary to accelerate the electrons up to high energies are produced by the collision of the radiatively-driven stellar winds. A study of the non-thermal emission is necessary in order to investigate O-star colliding wind binaries. Here preliminary results of our modeling of the colliding winds in Cyg OB2 No.9 are presented.
Some OB stars show variable non-thermal radio emission. The non-thermal emission is due to synchrotron radiation that is emitted by electrons accelerated to high energies. The electron acceleration occurs at strong shocks created by the collision of radiatively-driven stellar winds in binary systems. Here we present results of our modelling of two colliding wind systems: Cyg OB2 No. 8A and Cyg OB2 No. 9.
308 - M. Werner , O. Reimer , A. Reimer 2013
Context: Colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Observation of synchrotron radiation in the radio band confirms there is a relativistic electron population in CWBs. Accordingly, CWBs have been suspected sources of high-energy gamma-ray emission since the COS-B era. Theoretical models exist that characterize the underlying physical processes leading to particle acceleration and quantitatively predict the non-thermal energy emission observable at Earth. Aims: We strive to find evidence of gamma-ray emission from a sample of seven CWB systems: WR 11, WR 70, WR 125, WR 137, WR 140, WR 146, and WR 147. Theoretical modelling identified these systems as the most favourable candidates for emitting gamma-rays. We make a comparison with existing gamma-ray flux predictions and investigate possible constraints. Methods: We used 24 months of data from the Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to perform a dedicated likelihood analysis of CWBs in the LAT energy range. Results: We find no evidence of gamma-ray emission from any of the studied CWB systems and determine corresponding flux upper limits. For some CWBs the interplay of orbital and stellar parameters renders the Fermi-LAT data not sensitive enough to constrain the parameter space of the emission models. In the cases of WR140 and WR147, the Fermi-LAT upper limits appear to rule out some model predictions entirely and constrain theoretical models over a significant parameter space. A comparison of our findings to the CWB eta Car is made.
We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E <~ 1 kev) are particularly affected. This generally results in blueward-skewed profiles, especially when the system is viewed through the dense wind of the primary. The orbital variation of the line widths and shifts is reduced in a low inclination binary. The extreme case is a binary with i = 0 degrees, for which we would expect no line profile variation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا