Do you want to publish a course? Click here

The Milky Way Tomography with SDSS: I. Stellar Number Density Distribution

237   0   0.0 ( 0 )
 Added by Mario Juri\\'c
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Abridged: We estimate the distances to ~48 million stars detected by the Sloan Digital Sky Survey and map their 3D number density distribution in 100 < D < 20 kpc range over 6,500 deg^2 of sky. The data show strong evidence for a Galaxy consisting of an oblate halo, a disk component, and a number of localized overdensities with exponential disk parameters (bias-corrected for an assumed 35% binary fraction) H_1 = 300 pc, L_1 = 2600 pc, H_2 = 900 pc, L_2 = 3600 pc, and local density normalization of 12%. We find the halo to be oblate, with best-fit axis ratio c/a = 0.64, r^{-2.8} profile, and the local halo-to-thin disk normalization of 0.5%. We estimate the errors of derived model parameters to be no larger than ~20% (disk scales) and ~10% (thick disk normalization). While generally consistent with the above model, the density distribution shows a number of statistically significant localized deviations. We detect two overdensities in the thick disk region at (R, Z) ~ (6.5, 1.5)kpc and (R, Z) ~ (9.5, 0.8) kpc, and a remarkable density enhancement in the halo covering >1000deg^2 of sky towards the constellation of Virgo, at distances of ~6-20 kpc. Compared to a region symmetric with respect to the l=0 line, the Virgo overdensity is responsible for a factor of 2 number density excess and may be a nearby tidal stream or a low-surface brightness dwarf galaxy merging with the Milky Way. After removal of the resolved overdensities, the remaining data are consistent with a smooth density distribution; we detect no evidence of further unresolved clumpy substructure at scales ranging from ~50pc in the disk, to ~1 - 2 kpc in the halo.



rate research

Read More

Using effective temperature and metallicity derived from SDSS spectra for ~60,000 F and G type main sequence stars (0.2<g-r<0.6), we develop polynomial models for estimating these parameters from the SDSS u-g and g-r colors. We apply this method to SDSS photometric data for about 2 million F/G stars and measure the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component is spatially invariant, while the median disk metallicity smoothly decreases with distance from the Galactic plane from -0.6 at 500 pc to -0.8 beyond several kpc. The absence of a correlation between metallicity and kinematics for disk stars is in a conflict with the traditional decomposition in terms of thin and thick disks. We detect coherent substructures in the kinematics--metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [Fe/H]=-0.96, with an rms scatter of only ~0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that the LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper motion measurements accurate to ~0.2 mas/yr, for about 200 million F/G dwarf stars within a distance limit of ~100 kpc (g<23.5). [abridged]
We use SDSS photometry of 73 million stars to simultaneously obtain best-fit main-sequence stellar energy distribution (SED) and amount of dust extinction along the line of sight towards each star. Using a subsample of 23 million stars with 2MASS photometry, whose addition enables more robust results, we show that SDSS photometry alone is sufficient to break degeneracies between intrinsic stellar color and dust amount when the shape of extinction curve is fixed. When using both SDSS and 2MASS photometry, the ratio of the total to selective absorption, $R_V$, can be determined with an uncertainty of about 0.1 for most stars in high-extinction regions. These fits enable detailed studies of the dust properties and its spatial distribution, and of the stellar spatial distribution at low Galactic latitudes. Our results are in good agreement with the extinction normalization given by the Schlegel et al. (1998, SFD) dust maps at high northern Galactic latitudes, but indicate that the SFD extinction map appears to be consistently overestimated by about 20% in the southern sky, in agreement with Schlafly et al. (2010). The constraints on the shape of the dust extinction curve across the SDSS and 2MASS bandpasses support the models by Fitzpatrick (1999) and Cardelli et al. (1989). For the latter, we find an $R_V=3.0pm0.1$(random) $pm0.1$(systematic) over most of the high-latitude sky. At low Galactic latitudes (|b|<5), we demonstrate that the SFD map cannot be reliably used to correct for extinction as most stars are embedded in dust, rather than behind it. We introduce a method for efficient selection of candidate red giant stars in the disk, dubbed dusty parallax relation, which utilizes a correlation between distance and the extinction along the line of sight. We make these best-fit parameters, as well as all the input SDSS and 2MASS data, publicly available in a user-friendly format.
In a search for the signature of turbulence in the diffuse interstellar medium in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b|<5 degrees and |b|>=5 degrees are considered separately. The PDF of <n_HI> at high |b| is twice as wide as that at low |b|. The width of the PDF of the DIG is about 30 per cent smaller than that of the warm HI at the same latitudes. The results reported here provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.
We present stellar age distributions of the Milky Way (MW) bulge region using ages for $sim$6,000 high-luminosity ($log(g) < 2.0$), metal-rich ($rm [Fe/H] ge -0.5$) bulge stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Ages are derived using {it The Cannon} label-transfer method, trained on a sample of nearby luminous giants with precise parallaxes for which we obtain ages using a Bayesian isochrone-matching technique. We find that the metal-rich bulge is predominantly composed of old stars ($>$8 Gyr). We find evidence that the planar region of the bulge ($|Z_{rm GC}| le 0.25$ kpc) enriched in metallicity, $Z$, at a faster rate ($dZ/dt sim$ 0.0034 ${rm Gyr^{-1}}$) than regions farther from the plane ($dZ/dt sim$ 0.0013 ${rm Gyr^{-1}}$ at $|Z_{rm GC}| > 1.00$ kpc). We identify a non-negligible fraction of younger stars (age $sim$ 2--5 Gyr) at metallicities of $rm +0.2 < [Fe/H] < +0.4$. These stars are preferentially found in the plane ($|Z_{rm GC}| le 0.25$ kpc) and between $R_{rm cy} approx 2-3$ kpc, with kinematics that are more consistent with rotation than are the kinematics of older stars at the same metallicities. We do not measure a significant age difference between stars found in and outside of the bar. These findings show that the bulge experienced an initial starburst that was more intense close to the plane than far from the plane. Then, star formation continued at super-solar metallicities in a thin disk at 2 kpc $lesssim R_{rm cy} lesssim$ 3 kpc until $sim$2 Gyr ago.
67 - F. Surot 2019
Recent observational programmes are providing a global view of the Milky Way bulge that serves as template for detailed comparison with models and extragalactic bulges. A number of surveys (i.e. VVV, GIBS, GES, ARGOS, BRAVA, APOGEE) are producing comprehensive and detailed extinction, metallicity, kinematics and stellar density maps of the Galactic bulge with unprecedented accuracy. However, the still missing key ingredient is the distribution of stellar ages across the bulge. To overcome this limitation, we aim to age-date the stellar population in several bulge fields with the ultimate goal of deriving an age map of the Bulge. This paper presents the methodology and the first results obtained for a field along the Bulge minor axis, at $b=-6^circ$. We use a new PSF-fitting photometry of the VISTA Variables in the V{i}a L{a}ctea (VVV) survey data to construct deep color-magnitude diagrams of the bulge stellar population down to $sim$ 2 mag below the Main Sequence turnoff. We find the bulk of the bulge stellar population in the observed field along the minor axis to be at least older than $sim$ 7.5 Gyr. In particular, when the metallicity distribution function spectroscopically derived by GIBS is used, the best fit to the data is obtained with a combination of synthetic populations with ages in between $sim$ 7.5 Gyr and 11 Gyr. However, the fraction of stars younger than $sim$ 10 Gyr strongly depends upon the number of Blue Straggler Stars present in the bulge. Simulations show that the observed color-magnitude diagram of the bulge in the field along the minor axis is incompatible with the presence of a conspicuous population of intermediate-age/young (i.e. $lesssim 5$ Gyr) stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا