Do you want to publish a course? Click here

Milky Way Tomography IV: Dissecting Dust

195   0   0.0 ( 0 )
 Added by Michael Berry
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use SDSS photometry of 73 million stars to simultaneously obtain best-fit main-sequence stellar energy distribution (SED) and amount of dust extinction along the line of sight towards each star. Using a subsample of 23 million stars with 2MASS photometry, whose addition enables more robust results, we show that SDSS photometry alone is sufficient to break degeneracies between intrinsic stellar color and dust amount when the shape of extinction curve is fixed. When using both SDSS and 2MASS photometry, the ratio of the total to selective absorption, $R_V$, can be determined with an uncertainty of about 0.1 for most stars in high-extinction regions. These fits enable detailed studies of the dust properties and its spatial distribution, and of the stellar spatial distribution at low Galactic latitudes. Our results are in good agreement with the extinction normalization given by the Schlegel et al. (1998, SFD) dust maps at high northern Galactic latitudes, but indicate that the SFD extinction map appears to be consistently overestimated by about 20% in the southern sky, in agreement with Schlafly et al. (2010). The constraints on the shape of the dust extinction curve across the SDSS and 2MASS bandpasses support the models by Fitzpatrick (1999) and Cardelli et al. (1989). For the latter, we find an $R_V=3.0pm0.1$(random) $pm0.1$(systematic) over most of the high-latitude sky. At low Galactic latitudes (|b|<5), we demonstrate that the SFD map cannot be reliably used to correct for extinction as most stars are embedded in dust, rather than behind it. We introduce a method for efficient selection of candidate red giant stars in the disk, dubbed dusty parallax relation, which utilizes a correlation between distance and the extinction along the line of sight. We make these best-fit parameters, as well as all the input SDSS and 2MASS data, publicly available in a user-friendly format.



rate research

Read More

168 - D. Paradis , J.-Ph. Bernard , 2009
Dust properties appear to vary according to the environment in which the dust evolves. Previous observational indications of these variations in the FIR and submm spectral range are scarce and limited to specific regions of the sky. To determine whether these results can be generalised to larger scales, we study the evolution in dust emissivities from the FIR to mm wavelengths, in the atomic and molecular ISM, along the Galactic plane towards the outer Galaxy. We correlate the dust FIR to mm emission with the HI and CO emission. The study is carried out using the DIRBE data from 100 to 240 mic, the Archeops data from 550 mic to 2.1 mm, and the WMAP data at 3.2 mm (W band), in regions with Galactic latitude |b| < 30 deg, over the Galactic longitude range (75 deg < l < 198 deg) observed with Archeops. In all regions studied, the emissivity spectra in both the atomic and molecular phases are steeper in the FIR (beta = 2.4) than in the submm and mm (beta = 1.5). We find significant variations in the spectral shape of the dust emissivity as a function of the dust temperature in the molecular phase. Regions of similar dust temperature in the molecular and atomic gas exhibit similar emissivity spectra. Regions where the dust is significantly colder in the molecular phase show a significant increase in emissivity for the range 100 - 550 mic. This result supports the hypothesis of grain coagulation in these regions, confirming results obtained over small fractions of the sky in previous studies and allowing us to expand these results to the cold molecular environments in general of the outer MW. We note that it is the first time that these effects have been demonstrated by direct measurement of the emissivity, while previous studies were based only on thermal arguments.
210 - Ryan McKinnon 2015
We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for $z gtrsim 5$. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.
We present the kinematic results from our ARGOS spectroscopic survey of the Galactic bulge of the Milky Way. Our aim is to understand the formation of the Galactic bulge. We examine the kinematics of about 17,400 stars in the bulge located within 3.5 kpc of the Galactic centre, identified from the 28,000 star ARGOS survey. We aim to determine if the formation of the bulge has been internally driven from disk instabilities as suggested by its boxy shape, or if mergers have played a significant role as expected from Lambda CDM simulations. From our velocity measurements across latitudes b = -5 deg, -7.5 deg and -10 deg we find the bulge to be a cylindrically rotating system that transitions smoothly out into the disk. Within the bulge, we find a kinematically distinct metal-poor population ([Fe/H] < -1.0) that is not rotating cylindrically. The 5% of our stars with [Fe/H] < -1.0 are a slowly rotating spheroidal population, which we believe are stars of the metal weak thick disk and halo which presently lie in the inner Galaxy. The kinematics of the two bulge components that we identified in ARGOS paper III (mean [Fe/H] = -0.25 and [Fe/H] = +0.15, respectively) demonstrate that they are likely to share a common formation origin and are distinct from the more metal poor populations of the thick disk and halo which are colocated inside the bulge. We do not exclude an underlying merger generated bulge component but our results favour bulge formation from instabilities in the early thin disk.
We present a three-dimensional map of interstellar dust reddening, covering three-quarters of the sky out to a distance of several kiloparsecs, based on Pan-STARRS 1 and 2MASS photometry. The map reveals a wealth of detailed structure, from filaments to large cloud complexes. The map has a hybrid angular resolution, with most of the map at an angular resolution of 3.4 to 13.7, and a maximum distance resolution of ~25%. The three-dimensional distribution of dust is determined in a fully probabilistic framework, yielding the uncertainty in the reddening distribution along each line of sight, as well as stellar distances, reddenings and classifications for 800 million stars detected by Pan-STARRS 1. We demonstrate the consistency of our reddening estimates with those of two-dimensional emission-based maps of dust reddening. In particular, we find agreement with the Planck 353 GHz optical depth-based reddening map to within 0.05 mag in E(B-V) to a depth of 0.5 mag, and explore systematics at reddenings less than E(B-V) ~ 0.08 mag. We validate our per-star reddening estimates by comparison with reddening estimates for stars with both SDSS photometry and SEGUE spectral classifications, finding per-star agreement to within 0.1 mag out to a stellar E(B-V) of 1 mag. We compare our map to two existing three-dimensional dust maps, by Marshall et al. (2006) and Lallement et al. (2013), demonstrating our finer angular resolution, and better distance resolution compared to the former within ~3 kpc. The map can be queried or downloaded at http://argonaut.skymaps.info. We expect the three-dimensional reddening map presented here to find a wide range of uses, among them correcting for reddening and extinction for objects embedded in the plane of the Galaxy, studies of Galactic structure, calibration of future emission-based dust maps and determining distances to objects of known reddening.
We present a three-dimensional (3D) extinction map of the southern sky. The map covers the SkyMapper Southern Survey (SMSS) area of $sim$ 14,000 ${rm deg^{2}}$ and has spatial resolutions between 6.9 and 27 arcmin. Based on the multi-band photometry of SMSS, the Two Micron All Sky Survey, the Wide-Field Infrared Survey Explorer Survey and the Gaia mission, we have estimated values of the $r$-band extinction for $sim$ 19 million stars with the spectral energy distribution (SED) analysis. Together with the distances calculated from the Gaia data release 2 (DR2) parallaxes, we have constructed a three-dimensional extinction map of the southern sky. By combining our 3D extinction map with those from the literature, we present an all-sky 3D extinction map, and use it to explore the 3D distribution of the Galactic dust grains. We use two different models, one consisting a single disk and another of two disks, to fit the 3D distribution of the Galactic dust grains. The data is better fitted by a two-disk model, yielding smaller values of the Bayesian Information Criterion (BIC). The best fit model has scale heights of 73 and 225 pc for the thin and thick dust disks, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا