Do you want to publish a course? Click here

The initial mass distribution of the M82 star cluster system

52   0   0.0 ( 0 )
 Added by Richard de Grijs
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore whether we can constrain the shape of the INITIAL mass distribution of the star cluster population in M82s ~1 Gyr-old post-starburst region B, in which the present-day cluster mass function (CMF) is closely approximated by a log-normal distribution. We conclude that the M82 B initial CMF must have had a mean mass very close to that of the equilibrium CMF of Vesperini (1998). Consequently, if the presently observed M82 B CMF has remained approximately constant since its formation, as predicted, then the INITIAL CMF must have been characterized by a mean mass that was only slightly larger than the present mean mass. From our detailed analysis of the expected evolution of CMFs, we conclude that our observations of the M82 B CMF are inconsistent with a scenario in which the 1 Gyr-old cluster population originated from an initial power-law mass distribution. Our conclusion is supported by arguments related to the initial density in M82 B, which would have been unphysically high if the present cluster population were the remains of an initial power-law distribution.



rate research

Read More

We investigate the Initial Mass Function and mass segregation in super star cluster M82-F with high resolution Keck/NIRSPEC echelle spectroscopy. Cross-correlation with template supergiant spectra provides the velocity dispersion of the cluster, enabling measurement of the kinematic (virial) mass of the cluster when combined with sizes from NICMOS and ACS images. We find a mass of 6.6 +/- 0.9 x 10^5 M_sun based on near-IR light and 7.0 +/- 1.2 x 10^5 M_sun based on optical light. Using PSF-fitting photometry, we derive the clusters light-to-mass ratio in both near-IR and optical light, and compare to population synthesis models. The ratios are inconsistent with a normal stellar initial mass function for the adopted age of 40 to 60 Myr, suggesting a deficiency of low-mass stars within the volume sampled. King model light profile fits to new HST/ACS images of M82-F, in combination with fits to archival near-IR images, indicate mass segregation in the cluster. As a result, the virial mass represents a lower limit on the mass of the cluster.
We discuss the possibility that gravitational focusing, is responsible for the power-law mass function of star clusters $N(log M) propto M^{-1}$. This power law can be produced asymptotically when the mass accretion rate of an object depends upon the mass of the accreting body as $dot{M} propto M^2$. While Bondi-Hoyle-Littleton accretion formally produces this dependence on mass in a uniform medium, realistic environments are much more complicated. However, numerical simulations in SPH allowing for sink formation yield such an asymptotic power-law mass function. We perform pure N-body simulations to isolate the effects of gravity from those of gas physics and to show that clusters naturally result with the power-law mass distribution. We also consider the physical conditions necessary to produce clusters on appropriate timescales. Our results help support the idea that gravitationally-dominated accretion is the most likely mechanism for producing the cluster mass function.
62 - L. Ferrario 2005
Recent studies of white dwarfs in open clusters have provided new constraints on the initial - final mass relationship (IFMR) for main sequence stars with masses in the range 2.5 - 6.5 Mo. We re-evaluate the ensemble of data that determines the IFMR and argue that the IFMR can be characterised by a mean initial-final mass relationship about which there is an intrinsic scatter. We investigate the consequences of the IFMR for the observed mass distribution of field white dwarfs using population synthesis calculations. We show that while a linear IFMR predicts a mass distribution that is in reasonable agreement with the recent results from the PG survey, the data are better fitted by an IFMR with some curvature. Our calculations indicate that a significant (~28%) percentage of white dwarfs originating from single star evolution have masses in excess of ~0.8 Mo, obviating the necessity for postulating the existence of a dominant population of high-mass white dwarfs that arise from binary star mergers.
68 - Mark Gieles 2005
We present the luminosity function (LF) of star clusters in M51 based on HST/ACS observations taken as part of the Hubble Heritage project. The clusters are selected based on their size and with the resulting 5990 clusters we present one of the largest cluster samples of a single galaxy. We find that the LF can be approximated with a double power-law distribution with a break around M_V = -8.9. On the bright side the index of the power-law distribution is steeper (a = 2.75) than on the faint-side (a = 1.93), similar to what was found earlier for the ``Antennae galaxies. The location of the bend, however, occurs about 1.6 mag fainter in M51. We confront the observed LF with the model for the evolution of integrated properties of cluster populations of Gieles et al., which predicts that a truncated cluster initial mass function would result in a bend in, and a double power-law behaviour of, the integrated LF. The combination of the large field-of view and the high star cluster formation rate of M51 make it possible to detect such a bend in the LF. Hence, we conclude that there exists a fundamental upper limit to the mass of star clusters in M51. Assuming a power-law cluster initial mass function with exponentional cut-off of the form NdM ~ M^-b * exp(-M/M_C)dM, we find that M_C = 10^5 M_sun. A direct comparison with the LF of the ``Antennae suggests that there M_C = 4*10^5 M_sun.
As a young massive cluster in the Central Molecular Zone, the Arches cluster is a valuable probe of the stellar Initial Mass Function (IMF) in the extreme Galactic Center environment. We use multi-epoch Hubble Space Telescope observations to obtain high-precision proper motion and photometric measurements of the cluster, calculating cluster membership probabilities for stars down to 1.8 M$_{odot}$ between cluster radii of 0.25 pc -- 3.0 pc. We achieve a cluster sample with just ~8% field contamination, a significant improvement over photometrically-selected samples which are severely compromised by the differential extinction across the field. Combining this sample with K-band spectroscopy of 5 cluster members, we forward model the Arches cluster to simultaneously constrain its IMF and other properties (such as age and total mass) while accounting for observational uncertainties, completeness, mass segregation, and stellar multiplicity. We find that the Arches IMF is best described by a 1-segment power law that is significantly top-heavy: $alpha$ = 1.80 $pm$ 0.05 (stat) $pm$ 0.06 (sys), where dN/dm $propto$ m$^{-alpha}$, though we cannot discount a 2-segment power law model with a high-mass slope only slightly shallower than local star forming regions ($alpha$ = 2.04$^{+0.14}_{-0.19}$ $pm$ 0.04) but with a break at 5.8$^{+3.2}_{-1.2}$ $pm$ 0.02 M$_{odot}$. In either case, the Arches IMF is significantly different than the standard IMF. Comparing the Arches to other young massive clusters in the Milky Way, we find tentative evidence for a systematically top-heavy IMF at the Galactic Center.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا