Do you want to publish a course? Click here

Multi-Wavelength Studies of the Optically Dark Gamma-Ray Burst 001025A

133   0   0.0 ( 0 )
 Added by Kristian Pedersen
 Publication date 2005
  fields Physics
and research's language is English
 Authors K. Pedersen




Ask ChatGPT about the research

We identify the fading X-ray afterglow of GRB 001025A from XMM-Newton observations obtained 1.9-2.3 days, 2 years, and 2.5 years after the burst. The non-detection of an optical counterpart to an upper limit of R=25.5, 1.20 days after the burst, makes GRB 001025A a ``dark burst. Based on the X-ray afterglow spectral properties of GRB 001025A, we argue that some bursts appear optically dark because their afterglow is faint and their cooling frequency is close to the X-ray band. This interpretation is applicable to several of the few other dark bursts where the X-ray spectral index has been measured. The X-ray afterglow flux of GRB 001025A is an order of magnitude lower than for typical long-duration gamma-ray bursts. The spectrum of the X-ray afterglow can be fitted with an absorbed synchrotron emission model, an absorbed thermal plasma model, or a combination thereof. For the latter, an extrapolation to optical wavelengths can be reconciled with the R-band upper limit on the afterglow, without invoking any optical circumburst absorption, provided the cooling frequency is close to the X-ray band. Alternatively, if the X-ray afterglow is due to synchrotron emission only, seven magnitudes of extinction in the observed R-band is required to meet the R-band upper limit, making GRB 001025A much more obscured than bursts with detected optical afterglows. Based on the column density of X-ray absorbing circumburst matter, an SMC gas-to-dust ratio is insufficient to produce this amount of extinction. The X-ray tail of the prompt emission enters a steep temporal decay excluding that the tail of the prompt emission is the onset of the afterglow (abridged).



rate research

Read More

Gamma-ray bursts (GRB), at least those with a duration longer than a few seconds are the most energetic events in the Universe and occur at cosmological distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide multi-wavelength observations of GRB, to study their astrophysics and to use them as cosmological probes. Furthermore in 2009 ECLAIRs is expected to be the only space borne instrument capable of providing a GRB trigger in near real-time with sufficient localization accuracy for GRB follow-up observations with the powerful ground based spectroscopic telescopes available by then. A Phase A study of the ECLAIRs project has recently been launched by the French Space Agency CNES, aiming at a detailed mission design and selection for flight in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the Myriade family and dedicated ground-based optical telescopes. The satellite payload combines a 2 sr field-of-view coded aperture mask gamma-camera using 6400 CdTe pixels for GRB detection and localization with 10 arcmin precision in the 4 to 50 keV energy band, together with a soft X-ray camera for onboard position refinement to 1 arcmin. The ground-based optical robotic telescopes will detect the GRB prompt/early afterglow emission and localize the event to arcsec accuracy, for spectroscopic follow-up observations.
Gamma-ray Bursts (GRBs) are the most powerful transients in the Universe, over-shining for a few seconds all other $gamma$-ray sky sources. Their emission is produced within narrowly collimated relativistic jets launched after the core-collapse of massive stars or the merger of compact binaries. THESEUS will open a new window for the use of GRBs as cosmological tools by securing a statistically significant sample of high-$z$ GRBs, as well as by providing a large number of GRBs at low-intermediate redshifts extending the current samples to low luminosities. The wide energy band and unprecedented sensitivity of the Soft X-ray Imager (SXI) and X-Gamma rays Imaging Spectrometer (XGIS) instruments provide us a new route to unveil the nature of the prompt emission. For the first time, a full characterisation of the prompt emission spectrum from 0.3 keV to 10 MeV with unprecedented large count statistics will be possible revealing the signatures of synchrotron emission. SXI spectra, extending down to 0.3 keV, will constrain the local metal absorption and, for the brightest events, the progenitors ejecta composition. Investigation of the nature of the internal energy dissipation mechanisms will be obtained through the systematic study with XGIS of the sub-second variability unexplored so far over such a wide energy range. THESEUS will follow the spectral evolution of the prompt emission down to the soft X-ray band during the early steep decay and through the plateau phase with the unique ability of extending above 10 keV the spectral study of these early afterglow emission phases.
The X and Gamma-ray telescope ECLAIRs is foreseen to be launched on a low Earth orbit (h=630 km, i=30 degrees) aboard the SVOM satellite (Space-based multi-band astronomical Variable Objects Monitor), a French-Chinese mission with Italian contribution. Observations are expected to start in 2013. It has been designed to detect and localize Gamma-Ray Bursts (GRBs) or persistent sources of the sky, thanks to its wide field of view (about 2 sr) and its remarkable sensitivity in the 4-250 keV energy range, with enhanced imaging sensitivity in the 4-70 keV energy band. These characteristics are well suited to detect highly redshifted GRBs, and consequently to provide fast and accurate triggers to other onboard or ground-based instruments able to follow-up the detected events in a very short time from the optical wavelength bands up to the few MeV Gamma-Ray domain.
We have collected and analyzed data taken in different spectral bands (from X-ray to optical and infrared) of the field of GRB031220 and we present results of such multiband observations. Comparison between images taken at different epochs in the same filters did not reveal any strong variable source in the field of this burst. X-ray analysis shows that only two of the seven Chandra sources have a significant flux decrease and seem to be the most likely afterglow candidates. Both sources do not show the typical values of the R-K colour but they appear to be redder. However, only one source has an X-ray decay index (1.3 +/- 0.1) that is typical for observed afterglows. We assume that this source is the best afterglow candidate and we estimate a redshift of 1.90 +/- 0.30. Photometric analysis and redshift estimation for this object suggest that this GRB can be classified as a Dark Burst and that the obscuration is the result of dust extinction in the circum burst medium or inside the host galaxy.
Gamma-ray bursts - the most luminous explosions in the Universe - are produced as a result of cataclysmic events such as the collapse of a massive star or the merger of two neutron stars. We monitored the position of the close-by (about 370 Megaparsecs) gamma-ray burst GRB~190829A, which originated from a massive star collapse, through very long baseline interferometry (VLBI) observations with the European VLBI Network and the Very Long Baseline Array, involving a total of 30 telescopes across four continents. We carried out a total of 9 observations between 9 and 117 days after the gamma-ray burst at 5 and 15 GHz, reaching an overall excellent resolution. From a state-of-the art analysis of these data, we obtained valuable information on the source size and expansion rate. The measurements are in remarkable agreement with the size evolution entailed by a detailed modelling of the multi-wavelength light curves with a forward plus reverse shock model, which agrees with the observations across almost 18 orders of magnitude in frequency (including the High Energy Stereoscopic System data at teraelectronvolt photon energies) and more than 4 orders of magnitude in time. Thanks to the multi-wavelength, high-cadence coverage of the afterglow, inherent degeneracies in the afterglow model are broken to a large extent, allowing us to capture some unique physical insights: we find a low prompt emission efficiency $lesssim 10^{-3}$; we constrain the fraction of electrons that are accelerated to relativistic speeds in the forward shock downstream to be $chi_e<13%$ at the 90% confidence level; we find that the magnetic field energy density in the reverse shock downstream must decay rapidly after the shock crossing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا