No Arabic abstract
We used fully cosmological, high resolution N-body+SPH simulations to follow the formation of disk galaxies with a rotational velocity between 140 and 280 Km/sec in a Lambda CDM universe. The simulations include gas cooling, star formation (SF), the effects of a uniform UV background and a physically motivated description of feedback from supernovae (SN). Feedback parameters have been chosen to match the star formation rate and interstellar medium (ISM) properties of local galaxies. In cosmological simulations galaxies formed rotationally supported disks with realistic exponential scale lengths and fall on the I-band and baryonic Tully Fisher relations. The combination of UV background and SN feedback drastically reduced the number of visible satellites orbiting inside a Milky Way sized halo, bringing it in fair agreement with observations. Feedback delays SF in small galaxies and more massive ones contain older stellar populations. Here we focus on the SF and feedback implementations. We also briefly discuss how high mass and force resolution and a realistic description of SF and feedback are important ingredients to match the observed properties of galaxies.
We present predictions on the evolution of the Tully-Fisher (TF) relation with redshift, based on cosmological N-body/hydrodynamical simulations of disc galaxy formation and evolution. The simulations invoke star formation and stellar feedback, chemical evolution with non-instantaneous recycling, metallicity dependent radiative cooling and effects of a meta-galactic UV field, including simplified radiative transfer. At z=0, the simulated and empirical TF relations are offset by about 0.4 magnitudes (1 sigma) in the B and I bands. The origin of these offsets is somewhat unclear, but it may not necessarily be a problem of the simulations only. As to evolution, we find a brightening of the TF relation between z=0 and z=1 of about 0.85 mag in rest-frame B band, with a non-evolving slope. The brightening we predict is intermediate between the (still quite discrepant) observational estimates. This evolution is primarily a luminosity effect, while the stellar mass TF relation shows negligible evolution. The individual galaxies do gain stellar mass between z=1 and z=0, by a 50-100%; but they also correspondingly increase their characteristic circular speed. As a consequence, individually they mainly evolve ALONG the stellar mass TF relation, while the relation as such does not show any significant evolution.
Using 3D hydrodynamical simulations of galaxy formation with supernova feedback and a multiphase medium, we derive theoretical relations analogous to the observed Tully-Fisher (TF) relations in various photometric bands. This paper examines the influence of self-regulation mechanisms including supernova feedback on galaxy luminosities and the TF relation in three cosmological scenarios (CDM, Lambda CDM and BSI (broken scale invariance)). The galaxy catalogs derived from our hydrodynamical simulations lead to an acceptably small scatter in the theoretical TF relation amounting to Delta M =0.2-0.4 in the I band, and increasing by 0.1 magnitude from the I-band to the B-band. Our results give strong evidence that the tightness of the TF relation cannot be attributed to supernova feedback alone. However, although eliminating supernova feedback hardly affects the scatter, it does influence the slope of the TF relation quite sensitively. With supernova feedback, L propto V_c^{3-3.5} (depending on the strength of supernova feedback). Without it, L propto V_c^{2} as predicted by the virial theorem with constant M/L. The luminosity functions in the B and K bands are quite sensitive to supernova feedback at the faint end studied here. We find that the faint end of the B-band luminosity function (-18 leq M_B leq -15) has a slope that is steeper than the Stromlo-APM estimate, but in rough agreement with the recent ESO Slice Project estimates.
Cosmological simulations of galaxies have typically produced too many stars at early times. We study the global and morphological effects of radiation pressure (RP) in eight pairs of high-resolution cosmological galaxy formation simulations. We find that the additional feedback suppresses star formation globally by a factor of ~2. Despite this reduction, the simulations still overproduce stars by a factor of ~2 with respect to the predictions provided by abundance matching methods for halos more massive than 5E11 Msun/h (Behroozi, Wechsler & Conroy 2013). We also study the morphological impact of radiation pressure on our simulations. In simulations with RP the average number of low mass clumps falls dramatically. Only clumps with stellar masses Mclump/Mdisk <= 5% are impacted by the inclusion of RP, and RP and no-RP clump counts above this range are comparable. The inclusion of RP depresses the contrast ratios of clumps by factors of a few for clump masses less than 5% of the disk masses. For more massive clumps, the differences between and RP and no-RP simulations diminish. We note however, that the simulations analyzed have disk stellar masses below about 2E10 Msun/h. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. However, since massive clumps survive the inclusion of RP and are found in our mock observations, we do not find a disagreement between simulations of our clumpy galaxies and observations of clumpy galaxies. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps.
Recent observational results found a bend in the Tully-Fisher Relation in such a way that low mass systems lay below the linear relation described by more massive galaxies. We intend to investigate the origin of the observed features in the stellar and baryonic Tully-Fisher relations and analyse the role played by galactic outflows on their determination. Cosmological hydrodynamical simulations which include Supernova feedback were performed in order to follow the dynamical evolution of galaxies. We found that Supernova feedback is a fundamental process in order to reproduce the observed trends in the stellar Tully-Fisher relation. Simulated slow rotating systems tend to have lower stellar masses than those predicted by the linear fit to the massive end of the relation, consistently with observations. This feature is not present if Supernova feedback is turned off. In the case of the baryonic Tully-Fisher relation, we also detect a weaker tendency for smaller systems to lie below the linear relation described by larger ones. This behaviour arises as a result of the more efficient action of Supernovae in the regulation of the star formation process and in the triggering of powerful galactic outflows in shallower potential wells which may heat up and/or expel part of the gas reservoir.
Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a variety of physical processes over an enormous range of scales. A better understanding of the physics relevant for shaping galaxies, improved numerical methods, and increased computing power have led to simulations that can reproduce a large number of observed galaxy properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challenging due to the large array of physical processes affecting this matter component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.