Do you want to publish a course? Click here

A Data Exchange Standard for Optical (Visible/IR) Interferometry

244   0   0.0 ( 0 )
 Added by John Young
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper describes the OI Exchange Format, a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS), and supports storage of the optical interferometric observables including squared visibility and closure phase -- data products not included in radio interferometry standards such as UV-FITS. The format has already gained the support of most currently-operating optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI, and the Keck Interferometer, and is endorsed by the IAU Working Group on Optical Interferometry. Software is available for reading, writing and merging OI Exchange Format files.



rate research

Read More

Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.
Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope thereby improving angular resolution by orders of magnitude. Radio and millimeter wave astronomers depend on interferometry to achieve image quality on par with conventional visible and infrared telescopes. Interferometers at visible and infrared wavelengths extend angular resolution below the milli-arcsecond level to open up unique research areas in imaging stellar surfaces and circumstellar environments. In this chapter the basic principles of interferometry are reviewed with an emphasis on the common features for radio and optical observing. While many techniques are common to interferometers of all wavelengths, crucial differences are identified that will help new practitioners avoid unnecessary confusion and common pitfalls. Concepts essential for writing observing proposals and for planning observations are described, depending on the science wavelength, angular resolution, and field of view required. Atmospheric and ionospheric turbulence degrades the longest-baseline observations by significantly reducing the stability of interference fringes. Such instabilities represent a persistent challenge, and the basic techniques of phase-referencing and phase closure have been developed to deal with them. Synthesis imaging with large observing datasets has become a routine and straightforward process at radio observatories, but remains challenging for optical facilities. In this context the commonly-used image reconstruction algorithms CLEAN and MEM are presented. Lastly, a concise overview of current facilities is included as an appendix.
Multiple-input multiple-output (MIMO) techniques have recently demonstrated significant potentials in visible light communications (VLC), as they can overcome the modulation bandwidth limitation and provide substantial improvement in terms of spectral efficiency and link reliability. However, MIMO systems typically suffer from inter-channel interference, which causes severe degradation to the system performance. In this context, we propose a novel optical adaptive precoding (OAP) scheme for the downlink of MIMO VLC systems, which exploits the knowledge of transmitted symbols to enhance the effective signal-to-interference-plus-noise ratio. We also derive bit-error-rate expressions for the OAP under perfect and outdated channel state information (CSI). Our results demonstrate that the proposed scheme is more robust to both CSI error and channel correlation, compared to conventional channel inversion precoding.
We present a flexible code created for imaging from the bispectrum and visibility-squared. By using a simulated annealing method, we limit the probability of converging to local chi-squared minima as can occur when traditional imaging methods are used on data sets with limited phase information. We present the results of our code used on a simulated data set utilizing a number of regularization schemes including maximum entropy. Using the statistical properties from Monte-Carlo Markov chains of images, we show how this code can place statistical limits on image features such as unseen binary companions.
Compressive sensing (CS) combines data acquisition with compression coding to reduce the number of measurements required to reconstruct a sparse signal. In optics, this usually takes the form of projecting the field onto sequences of random spatial patterns that are selected from an appropriate random ensemble. We show here that CS can be exploited in `native optics hardware without introducing added components. Specifically, we show that random sub-Nyquist sampling of an interferogram helps reconstruct the field modal structure. The distribution of reduced sensing matrices corresponding to random measurements is provably incoherent and isotropic, which helps us carry out CS successfully.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا