Do you want to publish a course? Click here

Monte-Carlo Imaging for Optical Interferometry

403   0   0.0 ( 0 )
 Added by John D. Monnier
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a flexible code created for imaging from the bispectrum and visibility-squared. By using a simulated annealing method, we limit the probability of converging to local chi-squared minima as can occur when traditional imaging methods are used on data sets with limited phase information. We present the results of our code used on a simulated data set utilizing a number of regularization schemes including maximum entropy. Using the statistical properties from Monte-Carlo Markov chains of images, we show how this code can place statistical limits on image features such as unseen binary companions.



rate research

Read More

The theory and numerical modelling of radiation processes and radiative transfer play a key role in astrophysics: they provide the link between the physical properties of an object and the radiation it emits. In the modern era of increasingly high-quality observational data and sophisticated physical theories, development and exploitation of a variety of approaches to the modelling of radiative transfer is needed. In this article, we focus on one remarkably versatile approach: Monte Carlo Radiative Transfer (MCRT). We describe the principles behind this approach, and highlight the relative ease with which they can (and have) been implemented for application to a range of astrophysical problems. All MCRT methods have in common a need to consider the adverse consequences of Monte Carlo noise in simulation results. We overview a range of methods used to suppress this noise and comment on their relative merits for a variety of applications. We conclude with a brief review of specific applications for which MCRT methods are currently popular and comment on the prospects for future developments.
Imaging Atmospheric Cherenkov Telescopes (IACTs) currently in operation feature large mirrors and order of 1 ns time response to signals of a few photo-electrons produced by optical photons. This means that they are ideally suited for optical interferometry observations. Thanks to their sensitivity to visible wavelengths and long baselines optical intensity interferometry with IACTs allows reaching angular resolutions of tens to microarcsec. We have installed a simple optical setup on top of the cameras of the two 17 m diameter MAGIC IACTs and observed coherent fluctuations in the photon intensity measured at the two telescopes for three different stars. The sensitivity is roughly 10 times better than that achieved in the 1970s with the Narrabri interferometer.
The number of publications of aperture-synthesis images based on optical long-baseline interferometry measurements has recently increased due to easier access to visible and infrared interferometers. The interferometry technique has now reached a technical maturity level that opens new avenues for numerous astrophysical topics requiring milli-arcsecond model-independent imaging. In writing this paper our motivation was twofold: 1) review and publicize emblematic excerpts of the impressive corpus accumulated in the field of optical interferometry image reconstruction; 2) discuss future prospects for this technique by selecting four representative astrophysical science cases in order to review the potential benefits of using optical long baseline interferometers. For this second goal we have simulated interferometric data from those selected astrophysical environments and used state-of-the-art codes to provide the reconstructed images that are reachable with current or soon-to-be facilities. The image reconstruction process was blind in the sense that reconstructors had no knowledge of the input brightness distributions. We discuss the impact of optical interferometry in those four astrophysical fields. We show that image reconstruction software successfully provides accurate morphological information on a variety of astrophysical topics and review the current strengths and weaknesses of such reconstructions. We investigate how to improve image reconstruction and the quality of the image possibly by upgrading the current facilities. We finally argue that optical interferometers and their corresponding instrumentation, existing or to come, with 6 to 10 telescopes, should be well suited to provide images of complex sceneries.
By linking widely separated radio dishes, the technique of very long baseline interferometry (VLBI) can greatly enhance angular resolution in radio astronomy. However, at any given moment, a VLBI array only sparsely samples the information necessary to form an image. Conventional imaging techniques partially overcome this limitation by making the assumption that the observed cosmic source structure does not evolve over the duration of an observation, which enables VLBI networks to accumulate information as the Earth rotates and changes the projected array geometry. Although this assumption is appropriate for nearly all VLBI, it is almost certainly violated for submillimeter observations of the Galactic Center supermassive black hole, Sagittarius A* (Sgr A*), which has a gravitational timescale of only ~20 seconds and exhibits intra-hour variability. To address this challenge, we develop several techniques to reconstruct dynamical images (movies) from interferometric data. Our techniques are applicable to both single-epoch and multi-epoch variability studies, and they are suitable for exploring many different physical processes including flaring regions, stable images with small time-dependent perturbations, steady accretion dynamics, or kinematics of relativistic jets. Moreover, dynamical imaging can be used to estimate time-averaged images from time-variable data, eliminating many spurious image artifacts that arise when using standard imaging methods. We demonstrate the effectiveness of our techniques using synthetic observations of simulated black hole systems and 7mm Very Long Baseline Array observations of M87, and we show that dynamical imaging is feasible for Event Horizon Telescope observations of Sgr A*.
278 - M.Teshima , E.Carmona , P.Colin 2009
The Imaging Air Cherenkov Telescopes (IACTs), like, HESS, MAGIC and VERITAS well demonstrated their performances by showing many exciting results at very high energy gamma ray domain, mainly between 100 GeV and 10 TeV. It is important to investigate how much we can improve the sensitivity in this energy range, but it is also important to expand the energy coverage and sensitivity towards new domains, the lower and higher energies, by extending this IACT techniques. For this purpose, we have carried out the optimization of the array of large IACTs assuming with new technologies, advanced photodetectors, and Ultra Fast readout system by Monte Carlo simulation, especially to obtain the best sensitivity in the energy range between 10 GeV and 100 GeV. We will report the performance of the array of Large IACTs with advanced technologies and its limitation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا