Do you want to publish a course? Click here

Multiple CO lines in SMM J16359+6612 -- Further evidence for a merger

95   0   0.0 ( 0 )
 Added by Axel Weiss
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the IRAM 30m telescope, we report the detection of the CO(3--2), CO(4--3), CO(5--4) and CO(6--5) lines in the gravitational lensed submm galaxy SMM J16359+6612 at z=2.5. The CO lines have a double peak profile in all transitions. From a Gaussian decomposition of the spectra we show that the CO line ratios, and therefore the underlying physical conditions of the gas, are similar for the blue and the redshifted component. The CO line Spectral Energy Distribution (SED; i.e. flux density vs. rotational quantum number) turns over already at the CO(5--4) transition which shows that the molecular gas is less excited than in nearby starburst galaxies and high--z QSOs. This difference mainly arises from a lower average H2 density, which indicates that the gas is less centrally concentrated than in nuclear starburst regions in local galaxies. We suggest that the bulk of the molecular gas in SMM J16359+6612 may arise from an overlap region of two merging galaxies. The low gas density and clear velocity separation may reflect an evolutionary stage of the merger event that is in between those seen in the Antennae and in the more evolved ultraluminous infrared galaxies (ULIRGs) like e.g. Mrk231.



rate research

Read More

We report the detection of CO ($J$=3$to$2) line emission from all three multiple images (A,B and C) of the intrinsically faint ($simeq$ 0.8 mJy) submillimeter-selected galaxy SMM J16359+6612. The brightest source of the submm continuum emission (B) also corresponds to the brightest CO emission, which is centered at $z$=2.5168, consistent with the pre-existing redshift derived from Ha. The observed CO flux in the A, B and C images is 1.2, 3.5 and 1.6 Jy kms respectively, with a linewidth of $500pm 100$ kms. After correcting for the lensing amplification, the CO flux corresponds to a molecular gas mass of $sim 2times 10 ^{10} h_{71}^{-2}$ Msun, while the extent of the CO emission indicates that the dynamical mass of the system $sim9times10^{10}$ Msun. Two velocity components are seen in the CO spectra; these could arise from either a rotating compact ring or disk of gas, or merging substructure. The star formation rate in this galaxy was previously derived to be $sim$100--500 Msun yr. If all the CO emission arises from the inner few kpc of the galaxy and the galactic CO-to-H$_2$ conversion factor holds, then the gas consumption timescale is a relatively short 40 Myr, and so the submm emission from SMM J16359+6612 may be produced by a powerful, but short-lived circumnuclear starburst event in an otherwise normal and representative high-redshift galaxy.
116 - R. Edmonds 2008
Using the Expanded Very Large Array, we have conducted a search for 22.2 GHz H2O megamaser emission in the strongly lensed submm galaxy, SMM J16359+6612 at z=2.517. This object is lensed into three components, and after a correction for magnification is applied to its submm-wavelength flux density, it is typical of the bulk of the high-redshift, submm galaxy population responsible for the 850 um extragalactic background (S(850um)~1 mJy). We do not detect any H2O megamaser emission, but the lensing allows us to place an interesting constraint on the luminosity of any megamasers present, L(H2O) < 5305 solar luminosities for an assumed linewidth of 80 km/s. Because the far-infrared luminosity in submm galaxies is mainly powered by star formation, and very luminous H2O megamasers are more commonly associated with quasar activity, it could be that blind searches for H2O megamasers will not be an effective means of determining redshifts for less luminous members of the submm galaxy population.
Supernova (SN) cosmology is based on the assumption that the corrected luminosity of SN Ia would not evolve with redshift. Recently, our age dating of stellar populations in early-type host galaxies (ETGs) from high-quality spectra has shown that this key assumption is most likely in error. It has been argued though that the age-Hubble residual (HR) correlation from ETGs is not confirmed from two independent age datasets measured from multi-band optical photometry of host galaxies of all morphological types. Here we show, however, that one of them is based on highly uncertain and inappropriate luminosity-weighted ages derived, in many cases, under serious template mismatch. The other dataset employs more reliable mass-weighted ages, but the statistical analysis involved is affected by regression dilution bias, severely underestimating both the slope and significance of the age-HR correlation. Remarkably, when we apply regression analysis with a standard posterior sampling method to this dataset comprising a large sample ($N=102$) of host galaxies, very significant ($> 99.99 %$) correlation is obtained between the global population age and HR with the slope ($-0.047 pm 0.011$~mag/Gyr) highly consistent with our previous spectroscopic result from ETGs. For the local age of the environment around the site of SN, a similarly significant ($> 99.96 %$) correlation is obtained with a steeper slope ($-0.057 pm 0.016$ mag/Gyr). Therefore, the SN luminosity evolution is strongly supported by the age dating based on multi-band optical photometry and can be a serious systematic bias in SN cosmology.
222 - Y. Gong , X. D. Tang , C. Henkel 2019
In order to search for further observational evidence of cloud-cloud collisions in one of the promising candidates, L1188, we carried out observations of multiple molecular lines toward the intersection region of the two nearly orthogonal filamentary molecular clouds in L1188. Based on these observations, we find two parallel filamentary structures, both of which have at least two velocity components being connected with broad bridging features. We also found a spatially complementary distribution between the two molecular clouds, as well as enhanced $^{13}$CO emission and $^{12}$CO self-absorption toward their abutting regions. At the most blueshifted velocities, we unveil a 1~pc-long arc ubiquitously showing $^{12}$CO line wings. We discover two 22 GHz water masers, which are the first maser detections in L1188. An analysis of line ratios at a linear resolution of 0.2 pc suggests that L1188 is characterised by kinetic temperatures of 13--23~K and H$_{2}$ number densities of 10$^{3}$--10$^{3.6}$ cm$^{-3}$. On the basis of previous theoretical predictions and simulations, we suggest that these observational features can be naturally explained by the scenario of a cloud-cloud collision in L1188, although an additional contribution of stellar feedback from low-mass young stellar objects cannot be ruled out.
168 - Joel C. Berrier 2013
We present new and stronger evidence for a previously reported relationship between galactic spiral arm pitch angle P (a measure of the tightness of spiral structure) and the mass M_BH of a disk galaxys nuclear supermassive black hole (SMBH). We use an improved method to accurately measure the spiral arm pitch angle in disk galaxies to generate quantitative data on this morphological feature for 34 galaxies with directly measured black hole masses. We find a relation of log(M/M_sun) = (8.21 +/- 0.16) - (0.062 +/- 0.009)P. This method is compared with other means of estimating black hole mass to determine its effectiveness and usefulness relative to other existing relations. We argue that such a relationship is predicted by leading theories of spiral structure in disk galaxies, including the density wave theory. We propose this relationship as a tool for estimating SMBH masses in disk galaxies. This tool is potentially superior when compared to other methods for this class of galaxy and has the advantage of being unambiguously measurable from imaging data alone.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا