Do you want to publish a course? Click here

Neutrinos and Cosmology: an update

67   0   0.0 ( 0 )
 Added by Ofelia Pisanti
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the current cosmological status of neutrinos, with particular emphasis on their effects on Big Bang Nucleosynthesis, Large Scale Structure of the universe and Cosmic Microwave Background Radiation measurements.



rate research

Read More

Air-Cherenkov telescopes have mapped the Galactic plane at TeV energies. Here we evaluate the prospects for detecting the neutrino emission from sources in the Galactic plane assuming that the highest energy photons originate from the decay of pions, which yields a straightforward prediction for the neutrino flux from the decay of the associated production of charged pions. Four promising sources are identified based on having a large flux and a flat spectrum. We subsequently evaluate the probability of their identification above the atmospheric neutrino background in IceCube data as a function of time. We show that observing them over the twenty-year lifetime of the instrumentation is likely, and that some should be observable at the $3,sigma$ level with six years of data. In the absence of positive results, we derive constraints on the spectral index and cut-off energy of the sources, assuming a hadronic acceleration mechanism.
Sterile neutrinos in the electronvolt mass range are hinted at by a number of terrestrial neutrino experiments. However, such neutrinos are highly incompatible with data from the Cosmic Microwave Background and large scale structure. This paper discusses how charging sterile neutrinos under a new pseudoscalar interaction can reconcile eV sterile neutrinos with terrestrial neutrino data. We show that this model can reconcile eV sterile neutrinos in cosmology, providing a fit to all available data which is way better than the standard $Lambda$CDM model with one additional fully thermalized sterile neutrino. In particular it also prefers a value of the Hubble parameter much closer to the locally measured value.
In light of the improved sensitivities of cosmological observations, we examine the status of quasi-degenerate neutrino mass scenarios. Within the simplest extension of the standard cosmological model with massive neutrinos, we find that quasi-degenerate neutrinos are severely constrained by present cosmological data and neutrino oscillation experiments. % % We find that Planck 2018 observations of cosmic microwave background (CMB) anisotropies disfavour quasi-degenerate neutrino masses at $2.4$ Gaussian $sigma$s, while adding Baryon acoustic oscillations (BAO) data brings the rejection to 5.9$sigma$s. % The highest statistical significance with which one would be able to rule out quasi-degeneracy would arise if the sum of neutrino masses is $Sigma m_ u = 60$ meV (the minimum allowed by neutrino oscillation experiments); % indeed a sensitivity of 15 meV, as expected from a combination of future cosmological probes, would further improve the rejection level up to 17$sigma$. % We discuss the robustness of these projections with respect to assumptions on the underlying cosmological model, and also compare them with bounds from $beta$ decay endpoint and neutrinoless double beta decay studies.
We use a suite of N-body simulations that incorporate massive neutrinos as an extra-set of particles to investigate their effect on the halo mass function. We show that for cosmologies with massive neutrinos the mass function of dark matter haloes selected using the spherical overdensity (SO) criterion is well reproduced by the fitting formula of Tinker et al. (2008) once the cold dark matter power spectrum is considered instead of the total matter power, as it is usually done. The differences between the two implementations, i.e. using $P_{rm cdm}(k)$ instead of $P_{rm m}(k)$, are more pronounced for large values of the neutrino masses and in the high end of the halo mass function: in particular, the number of massive haloes is higher when $P_{rm cdm}(k)$ is considered rather than $P_{rm m}(k)$. As a quantitative application of our findings we consider a Planck-like SZ-clusters survey and show that the differences in predicted number counts can be as large as $30%$ for $sum m_ u = 0.4$ eV. Finally, we use the Planck-SZ clusters sample, with an approximate likelihood calculation, to derive Planck-like constraints on cosmological parameters. We find that, in a massive neutrino cosmology, our correction to the halo mass function produces a shift in the $sigma_8(Omega_{rm m}/0.27)^gamma$ relation which can be quantified as $Delta gamma sim 0.05$ and $Delta gamma sim 0.14$ assuming one ($N_ u=1$) or three ($N_ u=3$) degenerate massive neutrino, respectively. The shift results in a lower mean value of $sigma_8$ with $Delta sigma_8 = 0.01$ for $N_ u=1$ and $Delta sigma_8 = 0.02$ for $N_ u=3$, respectively. Such difference, in a cosmology with massive neutrinos, would increase the tension between cluster abundance and Planck CMB measurements.
General Relativity and the $Lambda$CDM framework are currently the standard lore and constitute the concordance paradigm. Nevertheless, long-standing open theoretical issues, as well as possible new observational ones arising from the explosive development of cosmology the last two decades, offer the motivation and lead a large amount of research to be devoted in constructing various extensions and modifications. All extended theories and scenarios are first examined under the light of theoretical consistency, and then are applied to various geometrical backgrounds, such as the cosmological and the spherical symmetric ones. Their predictions at both the background and perturbation levels, and concerning cosmology at early, intermediate and late times, are then confronted with the huge amount of observational data that astrophysics and cosmology are able to offer recently. Theories, scenarios and models that successfully and efficiently pass the above steps are classified as viable and are candidates for the description of Nature. We list the recent developments in the fields of gravity and cosmology, presenting the state of the art, high-lighting the open problems, and outlining the directions of future research. Its realization is performed in the framework of the COST European Action Cosmology and Astrophysics Network for Theoretical Advances and Training Actions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا