No Arabic abstract
Remote observing seeks to simulate the presence of the astronomer at the telescope. While this is useful, and necessary in some circumstances, simulation is not reality. The drive to abstract the astronomer from the instrument can have unpleasant consequences, some of which are prefigured in the ancient tales of Procrustes and Antaeus. This article, written in 1992 for a conference proceedings on remote observing, is reprinted here with only slight editorial changes and the addition of a short Afterword. I consider some of the human factors involved in remote observing, and suggest that our aim be to enhance rather than supplant the astronomer at the telescope.
The James Clerk Maxwell Telescope (JCMT) is the largest single dish telescope in the world focused on sub-millimeter astronomy - and it remains at the forefront of sub-millimeter discovery space. JCMT continues itspush for higher efficiency and greater science impact with a switch to fully remote operation. This switch toremote operations occurred on November 1st 2019. The switch to remote operations should be recognized to bepart of a decade long process involving incremental changes leading to Extended Observing - observing beyondthe classical night shift - and eventually to full remote operations. The success of Remote Observing is indicatedin the number of productive hours and continued low fault rate from before and after the switch.
Remote state preparation (RSP) is a quantum information protocol which allows preparing a quantum state at a distant location with the help of a preshared nonclassical resource state and a classical channel. The efficiency of successfully doing this task can be represented by the RSP-fidelity of the resource state. In this paper, we study the influence on the RSP-fidelity by applying certain local operations on the resource state. We prove that RSP-fidelity does not increase for any unital local operation. However, for nonunital local operation, such as local amplitude damping channel, we find that some resource states can be enhanced to increase the RSP-fidelity. We give the optimal parameter of symmetric local amplitude damping channel for enhancing Bell-diagonal resource states. In addition, we show RSP-fidelity can suddenly change or even vanish at instant under local decoherence.
One of the goals of the ICML workshop on representation and learning is to establish benchmark scores for a new data set of labeled facial expressions. This paper presents the performance of a Null model consisting of convolutions with random weights, PCA, pooling, normalization, and a linear readout. Our approach focused on hyperparameter optimization rather than novel model components. On the Facial Expression Recognition Challenge held by the Kaggle website, our hyperparameter optimization approach achieved a score of 60% accuracy on the test data. This paper also introduces a new ensemble construction variant that combines hyperparameter optimization with the construction of ensembles. This algorithm constructed an ensemble of four models that scored 65.5% accuracy. These scores rank 12th and 5th respectively among the 56 challenge participants. It is worth noting that our approach was developed prior to the release of the data set, and applied without modification; our strong competition performance suggests that the TPE hyperparameter optimization algorithm and domain expertise encoded in our Null model can generalize to new image classification data sets.
We propose an optical lattice scheme which would permit the experimental observation of Zitterbewegung (ZB) with ultracold, neutral atoms. A four-level tripod variant of the usual setup for stimulated Raman adiabatic passage (STIRAP) has been proposed for generating non-Abelian gauge fields [1]. Dirac-like Hamiltonians, which exhibit ZB, are simple examples of such non-Abelian gauge fields; we show how a variety of them can arise, and how ZB can be observed, in a tripod system. We predict that the ZB should occur at experimentally accessible frequencies and amplitudes.
We model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (~100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (~92%) already exists in the 2MASS survey. Most ccSNe (~98%) will be easily observed in the optical, but a significant fraction (~43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (~3 deg), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (~64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia SN. Based on our modeled observability, we find a Galactic ccSN rate of 3.2 (+7.3/-2.6) per century and a Galactic Type Ia SN rate of 1.4 (+1.4/-0.8) per century for a total Galactic SN rate of 4.6 (+7.4/-2.7) per century is needed to account for the SNe observed over the last millennium.