Do you want to publish a course? Click here

The 15-21 um PAH plateau

58   0   0.0 ( 0 )
 Added by Els Peeters
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 14--21 um emission spectra of star forming regions and compare them with the PAH spectra from the Ames PAH database. We show that while the emission in this region can be quite variable, the bulk of these variations can be accommodated by variations in the IS PAH population.



rate research

Read More

We present 15-20 um spectral maps towards the reflection nebula NGC2023 obtained with the Infrared Spectrograph in short-wavelength, high-resolution mode on board the Spitzer Space Telescope. These spectra reveal emission from PAHs, C60, and H2 superposed on a dust continuum. These emission components exhibit distinct spatial distributions: with increasing distance from the illuminating star, we observe the PAH emission followed by the dust continuum emission and the H2 emission. The C60 emission is located closest to the illuminating star in the south while in the north, it seems to be associated with the H/H2 transition. Emission from PAHs and PAH-related species produce features at 15.8, 16.4, 17.4, and 17.8 um and the 15-18 um plateau. These different PAH features show distinct spatial distributions. The 15.8 um band and 15-18 um plateau correlate with the 11.2 um PAH band and with each other, and are attributed to large, neutral PAHs. Conversely, the 16.4 um feature correlates with the 12.7 um PAH band, suggesting that both arise from species that are favored by the same conditions that favor PAH cations. The PAH contribution to the 17.4 um band is displaced towards the illuminating star with respect to the 11.2 and 12.7 um emission and is assigned to doubly ionized PAHs and/or a subset of cationic PAHs. The spatial distribution of the 17.8 um band suggests it arises from both neutral and cationic PAHs. In contrast to their intensities, the profiles of the PAH bands and the 15-18 um plateau do not vary spatially. Consequently, we conclude that the carrier of the 15-18 um plateau is distinct from that of the PAH bands.
We present extragalactic number counts and a lower limit estimate for the cosmic infrared background at 15 um from AKARI ultra deep mapping of the gravitational lensing cluster Abell 2218. This data is the deepest taken by any facility at this wavelength, and uniquely samples the normal galaxy population. We have de-blended our sources, to resolve photometric confusion, and de-lensed our photometry to probe beyond AKARIs blank-field sensitivity. We estimate a de-blended 5 sigma sensitivity of 28.7 uJy. The resulting 15 um galaxy number counts are a factor of three fainter than previous results, extending to a depth of ~ 0.01 mJy and providing a stronger lower limit constraint on the cosmic infrared background at 15 um of 1.9 +/- 0.5 nW m^-2 sr^-1.
We first obtained the spectrum of the diffuse Galactic light (DGL) at general interstellar space in 1.8-5.3 um wavelength region with the low-resolution prism spectroscopy mode of the AKARI Infra-Red Camera (IRC) NIR channel. The 3.3 um PAH band is detected in the DGL spectrum at Galactic latitude |b| < 15 deg, and its correlations with the Galactic dust and gas are confirmed. The correlation between the 3.3 um PAH band and the thermal emission from the Galactic dust is expressed not by a simple linear correlation but by a relation with extinction. Using this correlation, the spectral shape of DGL at optically thin region (5 deg < |b| < 15 deg) was derived as a template spectrum. Assuming that the spectral shape of this template spectrum is uniform at any position, DGL spectrum can be estimated by scaling this template spectrum using the correlation between the 3.3 um PAH band and the thermal emission from the Galactic dust.
198 - L. Cerrigone 2011
Among its great findings, the IRAS mission showed the existence of an unidentified mid-IR feature around 21 um. Since its discovery, this feature has been detected in all C-rich proto-PNe of intermediate spectral type (A-G) and - weakly - in a few PNe and AGB stars, but the nature of its carriers remains unknown. In this paper, we show the detection of this feature in the spectra of three new stars transiting from the AGB to the PN stage obtained with the Spitzer Space Telescope. Following a recent suggestion, we try to model the SEDs of our targets with amorphous carbon and FeO, which might be responsible for the unidentified feature. The fit thus obtained is not completely satisfactory, since the shape of the feature is not well matched. In the attempt to relate the unidentified feature to other dust features, we retrieved mid-IR spectra of all the 21-um sources currently known from ISO and Spitzer on-line archives and noticed a correlation between the flux emitted in the 21-um feature and that emitted at 7 and 11 um (PAH bands and HAC broad emission). Such a correlation may point to a common nature of the carriers.
For star-forming galaxies, we investigate a global relation between polycyclic aromatic hydrocarbon (PAH) emission luminosity at 3.3 um, L_PAH3.3, and infrared (8-1000 um) luminosity, L_IR, to understand how the PAH 3.3 um feature relates to the star formation activity. With AKARI, we performed near-infrared (2.5-5 um) spectroscopy of 184 galaxies which have L_IR sim 10^8 - 10^13 L_sun. We classify the samples into infrared galaxies (IRGs; L_IR < 10^11 L_sun), luminous infrared galaxies (LIRGs; L_IR sim 10^11 -10^12 L_sun) and ultra luminous infrared galaxies (ULIRGs; L_IR > 10^12 L_sun). We exclude sources which are likely contaminated by AGN activity, based on the rest-frame equivalent width of the PAH emission feature (< 40 nm) and the power-law index representing the slope of continuum emission (Gamma > 1; F_nu propto lambda^Gamma). Of these samples, 13 IRGs, 67 LIRGs and 20 ULIRGs show PAH emission feature at lambda_rest= 3.3 um in their spectra. We find that the L_PAH3.3/L_IR ratio considerably decreases toward the luminous end. Utilizing the mass and temperature of dust grains as well as the BrAlpha emission for the galaxies, we discuss the cause of the relative decrease in the PAH emission with L_IR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا