No Arabic abstract
Fluxes and upper limits in the wavelength range from 3.6 to 70 microns from the Spitzer Space Telescope are provided for twenty solar-mass Pleiades members. One of these stars shows a probable mid-IR excess and two others have possible excesses, presumably due to circumstellar debris disks. For the star with the largest, most secure excess flux at MIPS wavelengths, HII1101, we derive Log(L[dust]/L[Sun]) ~ -3.8 and an estimated debris disk mass of 4.2 x 10^-5 M(Earth) for an assumed uniform dust grain size of 10 microns If the stars with detected excesses are interpreted as stars with relatively recent, large collision events producing a transient excess of small dust particles, the frequency of such disk transients is about ~ 10 % for our ~ 100 Myr, Pleiades G dwarf sample. For the stars without detected 24-70 micron excesses, the upper limits to their fluxes correspond to approximate 3 sigma upper limits to their disk masses of 6 x 10^-6 M(Earth) using the MIPS 24 micron upper limit, or 2 x 10^-4 M(Earth) using the MIPS 70 micron limit. These upper limit disk masses (for warm and cold dust, respectively) are roughly consistent, but somewhat lower than, predictions of a heuristic model for the evolution of an average solar-mass stars debris disk based on extrapolation backwards in time from current properties of the Suns Kuiper belt.
We present IRAC/MIPS Spitzer observations of intermediate-mass stars in the 5 Myr old Lambda Orionis cluster. In a representative sample of stars earlier than F5 (29 stars), we find a population of 9 stars with a varying degree of moderate 24um excess comparable to those produced by debris disks in older stellar groups. As expected in debris disks systems, those stars do not exhibit emission lines in their optical spectra. We also include in our study the star HD 245185, a known Herbig Ae object which displays excesses in all Spitzer bands and shows emission lines in its spectrum. We compare the disk population in the Lambda Orionis cluster with the disk census in other stellar groups studied using similar methods to detect and characterize their disks and spanning a range of ages from 3 Myr to 10 Myr. We find that for stellar groups of 5 Myr or older the observed disk frequency in intermediate mass stars (with spectral types from late B to early F) is higher than in low mass stars (with spectral types K and M). This is in contradiction with the observed trend for primordial disks evolution, in which stars with higher stellar masses dissipate their primordial disks faster. At 3 Myr the observed disk frequency in intermediate mass stars is still lower than for low mass stars indicating that second generation dusty disks start to dominate the disk population at 5 Myr for intermediate mass stars. This result agrees with recent models of evolution of solids in the region of the disk where icy objects form (>30 AU), which suggest that at 5-10 Myr collisions start to produce large amount of dust during the transition from runaway to oligarchic growth (reaching sizes of ~500 km) and then dust production peaks at 10-30 Myr, when objects reach their maximum sizes (>1000 km)
We present Herschel PACS spectroscopy of the [OI] 63 micron gas-line for three circumstellar disk systems showing signs of significant disk evolution and/or planet formation: HR 8799, HD 377 and RX J1852.3-3700. [OI] is undetected toward HR 8799 and HD 377 with 3 sigma upper limits of 6.8 x 10^-18 W m^-2 and 9.9 x 10^-18 W m^-2 respectively. We find an [OI] detection for RX J1852.3-3700 at 12.3 +- 1.8 x 10^-18 W m^-2. We use thermo-chemical disk models to model the gas emission, using constraints on the [OI] 63 micron, and ancillary data to derive gas mass upper limits and constrain gas-to-dust ratios. For HD 377 and HR 8799, we find 3 sigma upper limits on the gas mass of 0.1-20 Mearth. For RX J1852.3-3700, we find two distinct disk scenarios that could explain the detection of [OI] 63 micron and CO(2-1) upper limits reported from the literature: (i) a large disk with gas co-located with the dust (16-500 AU), resulting in a large tenuous disk with ~16 Mearth of gas, or (ii) an optically thick gas disk, truncated at ~70 AU, with a gas mass of 150 Mearth. We discuss the implications of these results for the formation and evolution of planets in these three systems.
The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai-Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.
We report on initial results from a Spitzer program to search for very low-mass brown dwarfs in Ophiuchus. This program is an extension of an earlier study by Allers et al. which had resulted in an extraordinary success rate, 18 confirmed out of 19 candidates. Their program combined near-infrared and Spitzer photom- etry to identify objects with very cool photospheres together with circumstellar disk emission to indicate youth. Our new program has obtained deep IRAC pho- tometry of a 0.5 deg2 field that was part of the original Allers et al. study. We report 18 new candidates whose luminosities extend down to 10-4 Lcdot which sug- gests masses down to ~ 2 MJ if confirmed. We describe our selection techniques, likely contamination issues, and follow-on photometry and spectroscopy that are in progress.
Observations at 70 microns with the Spitzer Space Telescope have detected several stellar systems within 65 pc of the Sun. Of 18 presumably young systems detected in this study, as many as 15 have 70-micron emission in excess of that expected from their stellar photospheres. Five of the systems with excesses are members of the Tucanae Association. The 70-micron excesses range from a factor of ~2 to nearly 30 times the expected photospheric emission from these stars. In contrast to the 70-micron properties of these systems, there is evidence for an emission excess at 24 microns for only HD 3003, confirming previous results for this star. The lack of a strong 24-micron excess in most of these systems suggests that the circumstellar dust producing the IR excesses is relatively cool (T_dust < 150 K) and that there is little IR-emitting material within the inner few AU of the primary stars. Many of these systems lie close enough to Earth that the distribution of the dust producing the IR excesses might be imaged in scattered light at optical and near-IR wavelengths.