Do you want to publish a course? Click here

Circumstellar Debris Disks: Diagnosing the Unseen Perturber

94   0   0.0 ( 0 )
 Added by Erika Nesvold
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai-Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.



rate research

Read More

80 - Andrew Shannon 2016
The gap between two component debris disks is often taken to be carved by intervening planets scattering away the remnant planetesimals. We employ N-body simulations to determine how the time needed to clear the gap depends on the location of the gap and the mass of the planets. We invert this relation, and provide an equation for the minimum planet mass, and another for the expected number of such planets, that must be present to produce an observed gap for a star of a given age. We show how this can be combined with upper limits on the planetary system from direct imaging non-detections (such as with GPI or SPHERE) to produce approximate knowledge of the planetary system.
Thousands of exoplanets have been found with many widely different from the ones in our own system. Despite the success, systems with planets in wide orbits analogous to those of Jupiter and Saturn, in the critical first several hundred million years of evolution, are virtually unexplored. Where are the low-mass planets that are hidden from our exoplanet detection techniques? Is our Solar Systems planetary architecture unique? High-fidelity debris disk images offer an effective method to answer these questions. We can use them to study the formation and evolution of low-mass planets from youth to the age of the Solar System, providing snapshots of the complex processes and valuable insights into the formation and migration history of giant planets at wide orbits. This white paper focuses on resolving debris structures in thermal emission that is applicable to a large unbiased sample. We summarize the properties of the known debris disks and assess the feasibility of resolving them within our current and future infrared and millimeter facilities by adopting uniform criteria. JWST and the 9-m Origins Space Telescope are the most promising missions in the coming decades to resolve almost half of the known disks at high fidelity. Resolved debris structures at multiple wavelengths and at all stages of evolution would reveal the properties of unseen planet populations, enabling a unique demographic study of overall planet formation and evolution.
We conducted a survey for infrared excess emission from 16 nearby main sequence shell stars using the Multiband Imaging Photometer for Spitzer (MIPS) on the Spitzer Space Telescope. Shell stars are early-type stars with narrow absorption lines in their spectra that appear to arise from circumstellar (CS) gas. Four of the 16 stars in our survey showed excess emission at 24 microns and 70 microns characteristic of cool CS dust and are likely to be edge-on debris disks. Including previously known disks, it appears that the fraction of protoplanetary and debris disks among the main sequence shell stars is at least 48% +/- 14%. While dust in debris disks has been extensively studied, relatively little is known about their gas content. In the case of Beta Pictoris, extensive observations of gaseous species have provided insights into the dynamics of the CS material and surprises about the composition of the CS gas coming from young planetesimals (e.g. Roberge et al. 2006). To understand the co-evolution of gas and dust through the terrestrial planet formation phase, we need to study the gas in additional debris disks. The new debris disk candidates from this Spitzer survey double the number of systems in which the gas can be observed right now with sensitive line of sight absorption spectroscopy.
Debris disks are tenuous, dust-dominated disks commonly observed around stars over a wide range of ages. Those around main sequence stars are analogous to the Solar Systems Kuiper Belt and Zodiacal light. The dust in debris disks is believed to be continuously regenerated, originating primarily with collisions of planetesimals. Observations of debris disks provide insight into the evolution of planetary systems; the composition of dust, comets, and planetesimals outside the Solar System; as well as placing constraints on the orbital architecture and potentially the masses of exoplanets that are not otherwise detectable. This review highlights recent advances in multiwavelength, high-resolution scattered light and thermal imaging that have revealed a complex and intricate diversity of structures in debris disks, and discusses how modeling methods are evolving with the breadth and depth of the available observations. Two rapidly advancing subfields highlighted in this review include observations of atomic and molecular gas around main sequence stars, and variations in emission from debris disks on very short (days to years) timescales, providing evidence of non-steady state collisional evolution particularly in young debris disks.
The new NIKA2 camera at the IRAM 30m radiotelescope was used to observe three known debris disks in order to constrain the SED of their dust emission in the millimeter wavelength domain. We have found that the spectral index between the two NIKA2 bands (1mm and 2mm) is consistent with the Rayleigh-Jeans regime (lambda^{-2}), unlike the steeper spectra (lambda^{-3}) measured in the submillimeter-wavelength domain for two of the three disks $-$ around the stars Vega and HD107146. We provide a succesful proof of concept to model this spectral inversion in using two populations of dust grains, those smaller and those larger than a grain radius a0 of 0.5mm. This is obtained in breaking the slope of the size distribution and the functional form of the absorption coefficient of the standard model at a0. The third disk - around the star HR8799 - does not exhibit this spectral inversion but is also the youngest.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا