Do you want to publish a course? Click here

Detecting X-ray QPOs in Active Galaxies

79   0   0.0 ( 0 )
 Added by Simon Vaughan
 Publication date 2005
  fields Physics
and research's language is English
 Authors S. Vaughan




Ask ChatGPT about the research

Since EXOSAT produced the first good quality X-ray light curves of Seyfert galaxies there have been several claims of quasi-periodic oscillations (QPOs). None of these have withstood repeated analyses and observations. We review some problems concerning the detection of QPOs.



rate research

Read More

102 - S. Vaughan 2005
In this paper we address the question of whether existing X-ray observations of Seyfert galaxies are sufficiently sensitive to detect quasi-periodic oscillations (QPOs) similar to those observed in the X-ray variations of Galactic Black Holes (GBHs). We use data from XMM-Newton and simulated data based on the best RXTE long-term monitoring light curves, to show that if X-ray QPOs are present in Seyfert X-ray light curves - with similar shapes and strengths to those observed in GBHs, but at lower frequencies commensurate with their larger black hole masses - they would be exceedingly difficult to detect. Our results offer a simple explanation for the present lack of QPO detections in Seyferts. We discuss the improvements in telescope size and monitoring patterns needed to make QPO detections feasible. The most efficient type of future observatory for searching for X-ray QPOs in AGN is an X-ray All-Sky Monitor (ASM). A sufficiently sensitive ASM would be ideally suited to detecting low frequency QPOs in nearby AGN. The detection of AGN QPOs would strengthen the AGN-GBH connection and could serve as powerful diagnostics of the black hole mass, and the structure of the X-ray emitting region in AGN.
We show that the rms-flux relation recently discovered in the X-ray light curves of Active Galactic Nuclei (AGN) and X-ray binaries (XRBs) implies that the light curves have a formally non-linear, exponential form, provided the rms-flux relation applies to variations on all time-scales (as it appears to). This phenomenological model implies that stationary data will have a lognormal flux distribution. We confirm this result using an observation of Cyg X-1, and further demonstrate that our model predicts the existence of the powerful millisecond flares observed in Cyg X-1 in the low/hard state, and explains the general shape and amplitude of the bicoherence spectrum in that source. Our model predicts that the most variable light curves will show the most extreme non-linearity. This result can naturally explain the apparent non-linear variability observed in some highly variable Narrow Line Seyfert 1 (NLS1) galaxies, as well as the low states observed on long time-scales in the NLS1 NGC 4051, as being nothing more than extreme manifestations of the same variability process that is observed in XRBs and less variable AGN. That variability process must be multiplicative (with variations coupled together on all time-scales) and cannot be additive (such as shot-noise), or related to self-organised criticality, or result from completely independent variations in many separate emitting regions. Successful models for variability must reproduce the observed rms-flux relation and non-linear behaviour, which are more fundamental characteristics of the variability process than the power spectrum or spectral-timing properties. Models where X-ray variability is driven by accretion rate variations produced at different radii remain the most promising.
371 - D.M. Worrall 2018
Jet physics is again flourishing as a result of Chandras ability to resolve high-energy emission from the radio-emitting structures of active galaxies and separate it from the X-ray-emitting thermal environments of the jets. These enhanced capabilities have coincided with an increasing interest in the link between the growth of super-massive black holes and galaxies, and an appreciation of the likely importance of jets in feedback processes. I review the progress that has been made using Chandra and XMM-Newton observations of jets and the medium in which they propagate, addressing several important questions, including: Are the radio structures in a state of minimum energy? Do powerful large-scale jets have fast spinal speeds? What keeps jets collimated? Where and how does particle acceleration occur? What is jet plasma made of? What does X-ray emission tell us about the dynamics and energetics of radio plasma/gas interactions? Is a jets fate determined by the central engine?
We investigate frequency correlations of low frequency (LF, <80 Hz) and kHz quasi-periodic oscillations (QPOs) using the complete RXTE data sets on 6 accreting millisecond X-ray pulsars (AMXPs) and compare them to those of non-pulsating neutron star low mass X-ray binaries with known spin. For the AMXPs SAX J1808.4-3658 and XTE J1807-294, we find frequency-correlation power law indices that, surprisingly, are significantly lower than in the non-pulsars, and consistent with the relativistic precession model (RPM) prediction of 2.0 appropriate to test-particle orbital and Lense-Thirring precession frequencies. As previously reported, power law normalizations are significantly higher in these AMXPs than in the non-pulsating sources, leading to requirements on the neutron star specific moment of inertia in this model that cannot be satisfied with realistic equations of state. At least two other AMXPs show frequency correlations inconsistent with those of SAX J1808.4-3658 and XTE J1807-294, and possibly similar to those of the non-pulsating sources; for two AMXPs no conclusions could be drawn. We discuss these results in the context of a model that has had success in black hole (BH) systems involving a torus-like hot inner flow precessing due to (prograde) frame dragging, and a scenario in which additional (retrograde) magnetic and classical precession torques not present in BH systems are also considered. We show that a combination of these interpretations may accommodate our results.
74 - S. Boutloukos 2006
We report the discovery with the RXTE/PCA of twin kHz QPOs in Cir X-1. Eleven cases of simultaneous double QPOs occurred, with significances of up to 6.3 and 5.5 sigma and centroid frequencies ranging between approximately 56-225 and 230-500 Hz for the two QPO peaks, respectively, i.e., for the most part at frequencies well below those of other sources. The QPO properties clearly indicate that these double peaks are the kHz QPOs known from low magnetic field neutron stars, and not black-hole high-frequency QPOs, confirming that Cir X-1 is a neutron star. The kHz QPO peak separation varies over a wide range, ~175-340 Hz, and increases with QPO frequency. This is contrary to what is seen in other sources but agrees with predictions of the relativistic precession model and Alfven wave models; beat-frequency models require modification to accommodate this. In other observations single kHz QPOs can be seen down to frequencies as low as ~12 Hz, as well as a strong low-frequency (LF) QPO between 1 and 30 Hz. The relations between the frequencies of the kHz QPOs and the LF QPO are in good agreement with those found previously in Z sources, confirming that Cir X-1 may be a peculiar Z source. We suggest that the low frequencies of the kHz QPOs in Cir X-1 and to a lesser extent in (other) Z sources might be due to a relatively stronger radial inflow to the neutron star than in other kHz QPO sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا