No Arabic abstract
We present the results of optical spectroscopy of 139 stars obtained with the Hydra multi-object spectrograph. The objects extend over a 1.3 square degree area surrounding the main cloud of the rho Oph complex. The objects were selected from narrowband images to have H alpha in emission. Using the presence of strong H alpha emission, lithium absorption, location in the Hertzsprung-Russell diagram, or previously reported x-ray emission, we were able to identify 88 objects as young stars associated with the cloud. Strong H alpha emission was confirmed in 39 objects with line widths consistent with their origin in magnetospheric accretion columns. Two of the strongest emission-line objects are young, x-ray emitting brown dwarf candidates with M8 spectral types. Comparisons of the bolometric luminosities and effective temperatures with theoretical models suggest a medianage for this population of 2.1 Myr which is signifcantly older than the ages derived for objects in the cloud core. It appears that these stars formed contemporaneously with low mass stars in the Upper Scorpius subgroup, likely triggered by massive stars in the Upper-Centaurus subgroup.
The rho Oph molecular cloud is undergoing intermediate-mass star formation. UV radiation from its hottest young stars heats and dissociates exposed layers, but does not ionize hydrogen. Only faint radiation from the Rayleigh-Jeans tail of ~10-100K dust is expected at wavelengths longwards of 3mm. Yet Cosmic Background Imager (CBI) observations reveal that the rho Oph W photo-dissociation region (PDR) is surprisingly bright at centimetre wavelengths. We searched for interpretations consistent with the WMAP radio spectrum, new ISO-LWS parallel mode images and archival Spitzer data. Dust-related emission mechanisms at 1 cm, as proposed by Draine & Lazarian, are a possibility. But a magnetic enhancement of the grain opacity at 1cm is inconsistent with the morphology of the dust column maps Nd and the lack of detected polarization. Spinning dust, or electric-dipole radiation from spinning very small grains (VSGs), comfortably explains the radio spectrum, although not the conspicuous absence from the CBI data of the infrared circumstellar nebulae around the B-type stars S1 and SR~3. Allowing for VSG depletion can marginally reconcile spinning dust with the data. As an alternative interpretation we consider the continuum from residual charges in rho Oph W, where most of carbon should be photoionised by the close binary HD147889 (B2IV, B3IV). Electron densities of ~100 cm^{-3}, or H-nucleus densities n_H > 1E6 cm^{-3}, are required to interpret rho Oph W as the CII Stromgren sphere of HD147889. However the observed steep and positive low-frequency spectral index would then require optically thick emission from an hitherto unobserved ensemble of dense clumps or sheets with a filling factor ~1E-4 and n_H ~ 1E7 cm^{-3}.
Molecular oxygen, O2 has been expected historically to be an abundant component of the chemical species in molecular clouds and, as such, an important coolant of the dense interstellar medium. However, a number of attempts from both ground and from space have failed to detect O2 emission. The work described here uses heterodyne spectroscopy from space to search for molecular oxygen in the interstellar medium. The Odin satellite carries a 1.1 m sub-millimeter dish and a dedicated 119 GHz receiver for the ground state line of O2. Starting in 2002, the star forming molecular cloud core rho Oph A was observed with Odin for 34 days during several observing runs. We detect a spectral line at v(LSR) = 3.5 km/s with dv(FWHM) = 1.5 km/s, parameters which are also common to other species associated with rho Ohp A. This feature is identified as the O2 (N_J = 1_1 - 1_0) transition at 118 750.343 MHz. The abundance of molecular oxygen, relative to H2,, is 5E-8 averaged over the Odin beam. This abundance is consistently lower than previously reported upper limits.
We present an analysis of low resolution infrared spectra for 20 brown dwarf candidates in the core of the $rho$ Ophiuchi molecular cloud. Fifteen of the sources display absorption-line spectra characteristic of late-type stars. By comparing the depths of water vapor absorption bands in our candidate objects with a grid of M dwarf standards, we derive spectral types which are independent of reddening. Optical spectroscopy of one brown dwarf candidate confirms the spectral type derived from the water bands. Combining their spectral types with published near-infrared photometry, effective temperatures and bolometric stellar luminosities are derived enabling us to place our sample on the Hertzsprung-Russell diagram. We compare the positions of the brown dwarf candidates in this diagram with two sets of theoretical models in order to estimate their masses and ages. Considering uncertainties in placing the candidates in the H-R diagram, six objects consistently lie in the brown dwarf regime and another five objects lie in the transition region between stellar and substellar objects. The ages inferred for the sample are consistent with those derived for higher mass association members. Three of the newly identified brown dwarfs display infrared excesses at $lambda$=2.2 $mu$m suggesting that young brown dwarfs can have active accretion disks. Comparing our mass estimates of the brown dwarf candidates with those derived from photometric data alone suggests that spectroscopy is an essential component of investigations of the mass functions of young clusters.
Star formation in molecular clouds can be triggered by the dynamical action of winds from massive stars. Furthermore, X-ray and UV fluxes from massive stars can influence the life time of surrounding circumstellar disks. We present the results of a 53 ks XMM-Newton observation centered on the Rho Ophiuchi A+B binary system. Rho Ophiiuchi lies in the center of a ring of dust, likely formed by the action of its winds. This region is different from the dense core of the cloud (L1688 Core F) where star formation is at work. X-rays are detected from Rho Ophiuchi as well as a group of surrounding X-ray sources. We detected 89 X-ray sources, 47 of them have at least one counterpart in 2MASS + All-WISE catalogs. Based on IR and X-ray properties, we can distinguish between young stellar objects (YSOs) belonging to the cloud and background objects. Among the cloud members, we detect 3 debris disk objects and 22 disk-less / Class III young stars. We show that these stars have ages in $5-10$ Myr, and are significantly older than the YSOs in L1688. We speculate that they are the result of an early burst of star formation in the cloud. An X-ray energy of $ge5times10^{44}$ ergs has been injected into the surrounding medium during the past $5$ Myr, we discuss the effects of such energy budget in relation to the cloud properties and dynamics.
Using Spitzer Space Telescope and Chandra X-ray Observatory data, we identify YSOs in the Rosette Molecular Cloud (RMC). By being able to select cluster members and classify them into YSO types, we are able to track the progression of star formation locally within the cluster environments and globally within the cloud. We employ nearest neighbor method (NNM) analysis to explore the density structure of the clusters and YSO ratio mapping to study age progressions in the cloud. We find a relationship between the YSO ratios and extinction which suggests star formation occurs preferentially in the densest parts of the cloud and that the column density of gas rapidly decreases as the region evolves. This suggests rapid removal of gas may account for the low star formation efficiencies observed in molecular clouds. We find that the overall age spread across the RMC is small. Our analysis suggests that star formation started throughout the complex around the same time. Age gradients in the cloud appear to be localized and any effect the HII region has on the star formation history is secondary to that of the primordial collapse of the cloud.