No Arabic abstract
Star formation in molecular clouds can be triggered by the dynamical action of winds from massive stars. Furthermore, X-ray and UV fluxes from massive stars can influence the life time of surrounding circumstellar disks. We present the results of a 53 ks XMM-Newton observation centered on the Rho Ophiuchi A+B binary system. Rho Ophiiuchi lies in the center of a ring of dust, likely formed by the action of its winds. This region is different from the dense core of the cloud (L1688 Core F) where star formation is at work. X-rays are detected from Rho Ophiuchi as well as a group of surrounding X-ray sources. We detected 89 X-ray sources, 47 of them have at least one counterpart in 2MASS + All-WISE catalogs. Based on IR and X-ray properties, we can distinguish between young stellar objects (YSOs) belonging to the cloud and background objects. Among the cloud members, we detect 3 debris disk objects and 22 disk-less / Class III young stars. We show that these stars have ages in $5-10$ Myr, and are significantly older than the YSOs in L1688. We speculate that they are the result of an early burst of star formation in the cloud. An X-ray energy of $ge5times10^{44}$ ergs has been injected into the surrounding medium during the past $5$ Myr, we discuss the effects of such energy budget in relation to the cloud properties and dynamics.
We aim at performing a kinematic census of young stellar objects (YSOs) in the Rho Ophiuchi F core and partially in the E core of the L1688 dark cloud. We run a proper motion program at the ESO New Technology Telescope (NTT) with the Son of ISAAC (SOFI) instrument over nine years in the near-infrared. We complemented these observations with various public image databases to enlarge the time base of observations and the field of investigation to 0.5 deg X 0.5 deg. We derived positions and proper motions for 2213 objects. From these, 607 proper motions were derived from SOFI observations with a ~1.8 mas/yr accuracy while the remaining objects were measured only from auxiliary data with a mean precision of about ~3 mas/yr. We performed a kinematic analysis of the most accurate proper motions derived in this work, which allowed us to separate cluster members from field stars and to derive the mean properties of the cluster. From the kinematic analysis we derived a list of 68 members and 14 candidate members, comprising 26 new objects with a high membership probability. These new members are generally fainter than the known ones. We measured a mean proper motion of (mu_RA*, mu_DEC)=(-8.2, -24.3)+/-0.8 mas/yr for the L1688 dark cloud. A supervised classification was applied to photometric data of members to allocate a spectral energy distribution (SED) classification to the unclassified members.} We kinematically confirmed that the 56 members that were known from previous studies of the Rho Ophiuchi F cluster and that were also part of our survey are members of the cluster, and we added 26 new members. We defined the evolutionary status of the unclassified members of the cluster. We showed that a large part (23) of these new members are probably brown dwarfs, which multiplies the number of known substellar objects in the cluster by a factor of 3.3.
Molecular oxygen, O2 has been expected historically to be an abundant component of the chemical species in molecular clouds and, as such, an important coolant of the dense interstellar medium. However, a number of attempts from both ground and from space have failed to detect O2 emission. The work described here uses heterodyne spectroscopy from space to search for molecular oxygen in the interstellar medium. The Odin satellite carries a 1.1 m sub-millimeter dish and a dedicated 119 GHz receiver for the ground state line of O2. Starting in 2002, the star forming molecular cloud core rho Oph A was observed with Odin for 34 days during several observing runs. We detect a spectral line at v(LSR) = 3.5 km/s with dv(FWHM) = 1.5 km/s, parameters which are also common to other species associated with rho Ohp A. This feature is identified as the O2 (N_J = 1_1 - 1_0) transition at 118 750.343 MHz. The abundance of molecular oxygen, relative to H2,, is 5E-8 averaged over the Odin beam. This abundance is consistently lower than previously reported upper limits.
We report here the discovery of a 30-chain of embedded Herbig-Haro (HH) objects in the rho Ophiuchi dark cloud. These HH objects were first detected during a deep K_S-band observation (completeness magnitude for point source~19) made with NTT/SOFI. We confirm their nature with follow-up observations made with H_2 v=1-0 S(1) narrow-band filter. We argue that they belong to two different jets emanating from two Class I protostars: the main component of the recently resolved subarcsecond radio binary YLW15 (also called IRS43), and IRS54. We propose also to identify the [S II] knot HH224NW1 (Gomez et al 1998) as emanating from a counterjet of YLW15. The alignment between these HH objects and the thermal jet candidate found in YLW15 by Girart et al. (2000) implies that this jet is not precessing at least on timescale ~(2-4)x1E4 yr.
We observed the main core F of the rho Ophiuchi cloud, an active star-forming region located at ~140 pc, using XMM-Newton with an exposure of 33 ks. We detect 87 X-ray sources within the 30 diameter field-of-view of the it EPIC imaging detector array. We cross-correlate the positions of XMM-Newton X-ray sources with previous X-ray and infrared (IR) catalogs: 25 previously unknown X-ray sources are found from our observation; 43 X-ray sources are detected by both XMM-Newton and Chandra; 68 XMM-Newton X-ray sources have 2MASS near-IR counterparts. We show that XMM-Newton and Chandra have comparable sensitivity for point source detection when the exposure time is set to ~30 ks for both. We detect X-ray emission from 7 Class I sources, 26 Class II sources, and 17 Class III sources. The X-ray detection rate of Class I sources is very high (64 %), which is consistent with previous Chandra observations in this area. We propose that 15 X-ray sources are new class III candidates, which doubles the number of known Class III sources, and helps to complete the census of YSOs in this area. We also detect X-ray emission from two young bona fide brown dwarfs, GY310 and GY141, out of three known in the field of view. GY141 appears brighter by nearly two orders of magnitude than in the Chandra observation. We extract X-ray light curves and spectra from these YSOs, and find some of them showed weak X-ray flares. We observed an X-ray flare from the bona fide brown dwarf GY310. We find as in the previous Chandra observation of this region that Class I sources tend to have higher temperatures and heavier X-ray absorptions than Class II and III sources.
We have completed an optical spectroscopic survey of an unbiased, extinction-limited sample of candidate young stars covering 1.3 square degrees of the Rho Ophiuchi star forming region. While infrared, X-ray, and optical surveys of the cloud have identified many young stellar objects (YSOs), these surveys are biased towards particular stages of stellar evolution and are not optimal for studies of the disk frequency and initial mass function.We have obtained over 300 optical spectra to help identify 135 association members based on the presence of H-alpha in emission, lithium absorption, X-ray emission, a mid-infrared excess, a common proper motion, reflection nebulosity, and/or extinction considerations. Spectral types along with R and I band photometry were used to derive effective temperatures and bolometric luminosities for association members to compare with theoretical tracks and isochrones for pre-main-sequence stars. An average age of 3.1 Myr is derived for this population which is intermediate between that of objects embedded in the cloud core of Rho Ophiuchi and low mass stars in the Upper Scorpius subgroup. Consistent with this age we find a circumstellar disk frequency of 27% plus or minus 5%. We also constructed an initial mass function for an extinction-limited sample of 123 YSOs (A_v less than or equal to 8 mag), which is consistent with the field star initial mass function for YSOs with masses > 0.2 M_sun. There may be a deficit of brown dwarfs but this result relies on completeness corrections and requires confirmation.